首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 755 毫秒
1.
The G-protein-regulated, inwardly rectifying K+ (GIRK) channels are critical for functions as diverse as heart rate modulation and neuronal post-synaptic inhibition. GIRK channels are distributed predominantly throughout the heart, brain, and pancreas. In recent years, GIRK channels have received a great deal of attention for their direct G-protein betagamma (Gbetagamma) regulation. Native cardiac IKACh is composed of GIRK1 and GIRK4 subunits (Krapivinsky, G., Gordon, E. A., Wickman, K. A., Velimirovic, B., Krapivinsky, L., and Clapham, D. E. (1995) Nature 374, 135-141). Here, we examine the quaternary structure of IKACh using a variety of complementary approaches. Complete cross-linking of purified atrial IKACh protein formed a single adduct with a total molecular weight that was most consistent with a tetramer. In addition, partial cross-linking of purified IKACh produced subsets of molecular weights consistent with monomers, dimers, trimers, and tetramers. Within the presumed protein dimers, GIRK1-GIRK1 and GIRK4-GIRK4 adducts were formed, indicating that the tetramer was composed of two GIRK1 and two GIRK4 subunits. This 1:1 GIRK1 to GIRK4 stoichiometry was confirmed by two independent means, including densitometry of both silver-stained and Western-blotted native atrial IKACh. Similar experimental results could potentially be obtained if GIRK1 and GIRK4 subunits assembled randomly as 2:2 and equally sized populations of 3:1 and 1:3 tetramers. We also show that GIRK subunits may form homotetramers in expression systems, although the evidence to date suggests that GIRK1 homotetramers are not functional. We conclude that the inwardly rectifying atrial K+ channel, IKACh, a prototypical GIRK channel, is a heterotetramer and is most likely composed of two GIRK1 subunits and two GIRK4 subunits.  相似文献   

2.
GIRK1 and GIRK4 subunits combine to form the heterotetrameric acetylcholine-activated potassium current (IKACh) channel in pacemaker cells of the heart. The channel is activated by direct binding of G-protein Gbetagamma subunits. The GIRK1 subunit is atypical in the GIRK family in having a unique ( approximately 125-amino acid) domain in its distal C terminus. GIRK1 cannot form functional channels by itself but must combine with another GIRK family member (GIRK2, GIRK3, or GIRK4), which are themselves capable of forming functional homotetramers. Here we show, using an extracellularly Flag-tagged GIRK1 subunit, that GIRK1 requires association with GIRK4 for cell surface localization. Furthermore, GIRK1 homomultimers reside in core-glycosylated and nonglycosylated states. Coexpression of GIRK4 caused the appearance of the mature glycosylated form of GIRK1. [35S]Methionine pulse-labeling experiments demonstrated that GIRK4 associates with GIRK1 either during or shortly after subunit synthesis. Mutant and chimeric channel subunits were utilized to identify domains responsible for GIRK1 localization. Truncation of the unique C-terminal domain of Delta374-501 resulted in an intracellular GIRK1 subunit that produced normal IKACh-like channels when coexpressed with GIRK4. Chimeras containing the C-terminal domain of GIRK1 from amino acid 194 to 501 were intracellularly localized, whereas chimeras containing the C terminus of GIRK4 localized to the cell surface. Deletion analysis of the GIRK4 C terminus identified a 25-amino acid region required for cell surface targeting of GIRK1/GIRK4 heterotetramers and a 25-amino acid region required for cell surface localization of GIRK4 homotetramers. GIRK1 appeared intracellular in atrial myocytes isolated from GIRK4 knockout mice and was not maturely glycosylated, supporting an essential role for GIRK4 in the processing and cell surface localization of IKACh in vivo.  相似文献   

3.
The G-protein gated inward rectifier K+ channel (GIRK) is activated in vivo by the Gbeta gamma subunits liberated upon Gi-coupled receptor activation. We have recapitulated the acute desensitization of receptor-activated GIRK currents in heterologous systems and shown that it is a membrane-delimited process. Its kinetics depends on the guanine nucleotide species available and could be accounted for by the nucleotide exchange and hydrolysis cycle of G proteins. Indeed, acute desensitization is abolished by nonhydrolyzable GTP analogues. Whereas regulators of G-protein signaling (RGS) proteins by their GTPase-activating protein activities are regarded as negative regulators, a positive regulatory function of RGS4 is uncovered in our study; the opposing effects allow RGS4 to potentiate acute desensitization without compromising GIRK activation.  相似文献   

4.
The region encoded by amino acids 956-982 of adenylyl cyclase 2 is important for Gbetagamma stimulation. Interactions of a peptide encoding the 956-982 region of adenylyl cyclase 2 (QEHAQEPERQYMHIGTMVEFAYALVGK (QEHA peptide)) with Gbetagamma subunits were studied. QEHA peptide was covalently attached to beta subunit of free Gbetagamma by the cross-linker N-succinimidyl(4-iodoacetyl)aminobenzoate. Cross-linking was proportional to the amount of QEHA peptide added; other control peptides cross-linked minimally. When Go was used, very little cross-linking was observed with GDP and EDTA, but upon activation by guanosine 5'-3-O-(thio)triphosphate and Mg2+, specific cross-linking of the QEHA peptide to Gbeta was observed. We conclude that beta subunits of G proteins contain effector interaction domains that are occluded by Galpha subunits in the heterotrimer. Molecular modeling studies used to dock the QEHA peptide on to Gbeta indicate that amino acids 75-165 of Gbeta may be involved in effector interactions.  相似文献   

5.
The present study was designed to obtain evidence for direct interactions of G-protein alpha (Galpha) and beta gamma subunits (Gbeta gamma) with N- (alpha1B) and P/Q-type (alpha1A) Ca2+ channels, using synthetic peptides and fusion proteins derived from loop 1 (cytoplasmic loop between repeat I and II) and the C terminus of these channels. For N-type, prepulse facilitation as mediated by Gbeta gamma was impaired when a synthetic loop 1 peptide was applied intracellularly. Receptor agonist-induced inhibition of N-type as mediated by Galpha was also impaired by the loop 1 peptide but only when applied in combination with a C-terminal peptide. For P/Q-type channels, by contrast, the Galpha-mediated inhibition was diminished by application of a C-terminal peptide alone. Moreover, in vitro binding analysis for N- and P/Q-type channels revealed direct interaction of Galpha with C-terminal fusion proteins as well as direct interaction of Gbeta gamma with loop 1 fusion proteins. These findings define loop 1 of N- and P/Q-type Ca2+ channels as an interaction site for Gbeta gamma and the C termini for Galpha.  相似文献   

6.
We have investigated aspects of ion selectivity in K+ channels by functional expression of wild-type and mutant heteromultimeric G protein-coupled inward-rectifier K+ (GIRK) channels in Xenopus oocytes. Within the K+ channel pore (P) region signature sequence, a large number of point mutations in GIRK1 and GIRK4 subunits have been made at a key tyrosine residue--the "signature" tyrosine of the GYG. Studies of mutant GIRK1/GIRK4 heteromultimers reveal that the GIRK1 and GIRK4 subunits contribute asymmetrically to K+ selectivity. The signature tyrosine of GIRK1 can be mutated to many different residues while retaining selectivity; in contrast, the analogous position in GIRK4 must be tyrosine for maximum selectivity. Other residues of the P region also contribute to selectivity, and studies with GIRK1/GIRK4 chimeras reveal that an intact, heteromultimeric P region is necessary and sufficient for optimal K+ selectivity. We propose that the GIRK1 and GIRK4 P regions play roles similar to the two P regions of an emerging family of K+ channels whose subunits each have two P regions connected in tandem. We find different consequences between similar mutations in inward-rectifier and voltage-gated K+ channels, which suggests that the pore structures and selectivity mechanisms in the two classes of channel may not be identical. We confirm that GIRK4 subunits alone can form functional channels in oocytes, but we find that these channels are measurably permeable to Na2+ and Ca2+.  相似文献   

7.
G-protein-regulated inwardly rectifying K+ (GIRK) channels play critical inhibitory roles throughout the nervous system, heart, and pancreas. They are believed to be heterotetramers consisting of GIRK1 (Kir3.1) and either GIRK2 (Kir3.2), GIRK3 (Kir3.3), or GIRK4 (Kir3.4) subunits. The GIRK1 subunit is hypothesized to be critical to form GIRK channels with normal channel kinetics based on heterologous expression studies. However, GIRK2 and GIRK3 proteins are present in areas of the brain where no GIRK1 has been detected. Here we demonstrate that GIRK tetramers lacking GIRK1 can be purified from bovine heart atria. We have found that only half of GIRK4 is purified as the GIRK1-GIRK4 heterotetramer, whereas the remaining GIRK4 forms a high molecular weight, SDS-resistant complex that does not contain GIRK1. These GIRK4 complexes, most likely GIRK4 homotetramers, were previously not seen because of their aberrant migration on SDS-polyacrylamide gels. We propose that all of GIRK1 and half of GIRK4 proteins in atria combine to form the heterotetramer IKACh, whereas the remaining GIRK4 forms a novel tetrameric complex. GIRK4 homotetramers form channels with unusual single channel behavior, and their contribution to native currents requires further investigation.  相似文献   

8.
Xenopus oocytes injected with GIRK1 mRNA express inwardly rectifying K+ channels resembling IKACh. Yet IKACh, the atrial G protein-regulated ion channel, is a heteromultimer of GIRK1 and CIR. Reasoning that an oocyte protein might be substituting for CIR, we cloned XIR, a CIR homolog endogenously expressed by Xenopus oocytes. Coinjecting XIR and GIRK1 mRNAs produced large, inwardly rectifying K+ currents responsive to m2-muscarinic receptor stimulation. The m2-stimulated currents of oocytes expressing GIRK1 alone decreased 80% after injecting antisense oligonucleotides specific to the 5' untranslated region of XIR, but GIRK1/CIR currents were unaffected. Thus, GIRK1 without XIR or CIR only ineffectively produces currents in oocytes. This result suggests that GIRK1 does not form native homomultimeric channels.  相似文献   

9.
G protein-gated inwardly rectifying K+ (GIRK) channels, which are important regulators of membrane excitability both in heart and brain, appear to function as heteromultimers. GIRK1 is unique in the GIRK channel family in that although it is by itself inactive, it can associate with the other family members (GIRK2-GIRK5) to enhance their activity and alter their single-channel characteristics. By generating a series of chimeras, we identified a phenylalanine residue, F137, in the pore region of GIRK1 that critically controls channel activity. F137 is found only in GIRK1, while the remaining GIRK channels possess a conserved serine residue in the analogous position. The single-point mutant GIRK4(S143F) behaved as a GIRK1 analog, forming multimers with GIRK2, GIRK4, or GIRK5 channels that exhibited prolonged single-channel open-time duration and enhanced activity compared with that of homomultimers. Expression of the corresponding GIRK1 (F137S) mutant alone resulted in appreciable channel activity with novel characteristics that was further enhanced upon coexpression with other GIRK subunits. Thus, although the F137 residue renders the GIRK1 subunit inactive, when combined with other GIRK heteromeric partners it alters their gating and contributes to their enhanced activity.  相似文献   

10.
We investigated the effects of muscarinic acetylcholine receptor stimulation on the expression levels of the G-protein-coupled inwardly rectifying K+ channel (GIRK) subunits using solution hybridization and immunoblot analyses. We report here that treatment of chick embryos in ovo with muscarinic agonist causes decreases in mRNA levels encoding GIRK1 and GIRK4 in atria but does not alter GIRK1 expression in ventricles. In addition, GIRK1 protein levels also demonstrate a decrease in atria upon muscarinic acetylcholine receptor stimulation. Numerous receptors couple to the activation of the GIRK family of inwardly rectifying K+ channels; thus, these decreases represent a novel mechanism for regulating physiological responses to chronic agonist exposure.  相似文献   

11.
To delineate the specific regions of phospholipase C beta2 (PLC beta2) involved in binding and activation by G protein betagamma subunits, we synthesized peptides corresponding to segments of PLC beta2. Two overlapping peptides corresponding to Asn-564-Lys-583 (N20K) and Glu-574-Lys-593 (E20K) inhibited the activation of PLC beta2 by betagamma subunits (IC50 50 and 150 microM, respectively), whereas two control peptides did not. N20K and E20K, but not the control peptides, inhibited betagamma-dependent ADP-ribosylation of Galphai1 by pertussis toxin and betagamma-dependent activation of phosphoinositide 3-kinase. To demonstrate direct binding of the peptides to betagamma subunits, the peptides were chemically cross-linked to purified beta1gamma2. N20K and E20K cross-linked to both beta1 and gamma2 subunits, whereas the control peptides did not. Cross-linking to beta and gamma was inhibited by incubation with excess PLC beta2 or PLC beta3, whereas cross-linking to gamma but not beta was inhibited by r-myr-alphai1. These data together demonstrate specificity of N20K and E20K for G betagamma binding and inhibition of effector activation by betagamma subunits. The results suggest that an overlapping region of the two active peptides, Glu-574-Lys-583, mimics a region of PLC beta2 that is involved in binding to betagamma subunits. Changing a tyrosine to a glutamine in this overlapping region of the peptides inhibited binding of the peptide to betagamma subunits. Alignment of these peptides with the three-dimensional structure from PLC delta1 identifies a putative alpha helical region on the surface of the catalytic domain of PLC beta2 that could interact with betagamma subunits.  相似文献   

12.
We investigated which subtypes of G-protein beta subunits participate in voltage-dependent modulation of N-type calcium channels. Calcium currents were recorded from cultured rat superior cervical ganglion neurons injected intranuclearly with DNA encoding five different G-protein beta subunits. Gbeta1 and Gbeta2 strongly mimicked the fast voltage-dependent inhibition of calcium channels produced by many G-protein-coupled receptors. The Gbeta5 subunit produced much weaker effects than Gbeta1 and Gbeta2, whereas Gbeta3 and Gbeta4 were nearly inactive in these electrophysiological studies. The specificity implied by these results was confirmed and extended using the yeast two-hybrid system to test for protein-protein interactions. Here, Gbeta1 or Gbeta2 coupled to the GAL4-activation domain interacted strongly with a channel sequence corresponding to the intracellular loop connecting domains I and II of a alpha1 subunit of the class B calcium channel fused to the GAL4 DNA-binding domain. In this assay, the Gbeta5 subunit interacted weakly, and Gbeta3 and Gbeta4 failed to interact. Together, these results suggest that Gbeta1 and/or Gbeta2 subunits account for most of the voltage-dependent inhibition of N-type calcium channels and that the linker between domains I and II of the calcium channel alpha1 subunit is a principal receptor for this inhibition.  相似文献   

13.
Modulation of neuronal voltage-gated Ca channels has important implications for synaptic function. To investigate the mechanisms of Ca channel modulation, we compared the G-protein-dependent facilitation of three neuronal Ca channels. alpha1A, alpha1B, or alpha1E subunits were transiently coexpressed with alpha2-deltab and beta3 subunits in HEK293 cells, and whole-cell currents were recorded. After intracellular dialysis with GTPgammaS, strongly depolarized conditioning pulses facilitated currents mediated by each Ca channel type. The magnitude of facilitation depended on current density, with low-density currents being most strongly facilitated and high-density currents often lacking facilitation. Facilitating depolarizations speeded channel activation approximately 1.7-fold for alpha1A and alpha1B and increased current amplitudes by the same proportion, demonstrating equivalent facilitation of G-protein-inhibited alpha1A and alpha1B channels. Inactivation typically obscured facilitation of alpha1E current amplitudes, but the activation kinetics of alpha1E currents showed consistent and pronounced G-protein-dependent facilitation. The onset and decay of facilitation had the same kinetics for alpha1A, alpha1B, and alpha1E, suggesting that Gbeta gamma dimers dissociate from and reassociate with these Ca channels at very similar rates. To investigate the structural basis for N-type Ca channel modulation, we expressed a mutant of alpha1B missing large segments of the II-III loop and C terminus. This deletion mutant exhibited undiminished G-protein-dependent facilitation, demonstrating that a Gbeta gamma interaction site recently identified within the C terminus of alpha1E is not required for modulation of alpha1B.  相似文献   

14.
Both the alpha and betagamma subunits of heterotrimeric guanine nucleotide-binding proteins (G proteins) communicate signals from receptors to effectors. Gbetagamma subunits can regulate a diverse array of effectors, including ion channels and enzymes. Galpha subunits bound to guanine diphosphate (Galpha-GDP) inhibit signal transduction through Gbetagamma subunits, suggesting a common interface on Gbetagamma subunits for Galpha binding and effector interaction. The molecular basis for interaction of Gbetagamma with effectors was characterized by mutational analysis of Gbeta residues that make contact with Galpha-GDP. Analysis of the ability of these mutants to regulate the activity of calcium and potassium channels, adenylyl cyclase 2, phospholipase C-beta2, and beta-adrenergic receptor kinase revealed the Gbeta residues required for activation of each effector and provides evidence for partially overlapping domains on Gbeta for regulation of these effectors. This organization of interaction regions on Gbeta for different effectors and Galpha explains why subunit dissociation is crucial for signal transmission through Gbetagamma subunits.  相似文献   

15.
A synthetic 23-mer peptide (M2GlyR) with the amino acid sequence of the putative transmembrane segment M2 of the strychnine-binding alpha subunit of the inhibitory glycine receptor forms anion-selective channels in phospholipid bilayers. The most frequent events show single-channel conductances, gamma, of 25 pS and 49 pS in symmetric 0.5 M KCl with channel open lifetimes, tau o, in the millisecond time range. These properties match those of authentic glycine receptors studied in inside-out patches of cultured rat spinal cord neurons, namely gamma = 27 pS and gamma = 45 pS, and tau o in the millisecond time range. The channel activity of M2GlyR is sequence-specific: 1) a synthetic peptide with the sequence of putative transmembrane segment M1 (M1GlyR), not considered to contribute to the channel lining, does not form channels; 2) an analog of M2GlyR with site-specific substitutions displays distinct channel properties: 2 arginine residues at the N and C termini of M2, postulated to contribute to the anion selectivity of the channel, are substituted by glutamic acids, and the analog peptide ([Glu3,22]M2GlyR) forms cation-selective channels. Further, a four-helix bundle protein (T4M2GlyR) formed by tethering four identical M2GlyR modules to a carrier template forms homogeneous anion-selective channels with gamma = 25 pS in 0.5 M KCl. These channels are blocked by picrotoxin and by the anion channel blockers 9-anthracene carboxylic acid and niflumic acid, but not by an analog of the local anesthetic lidocaine (QX-222), a cation channel blocker. Observed single-channel properties suggest that a pentameric assembly of alpha and beta subunits with a central pore lined by M2 segments would account for conductance properties of the authentic glycine receptor and the 2 arginines at either end of M2 could confer anion specificity to the receptor channel.  相似文献   

16.
Here we report novel effects of regulators of G protein signaling (RGS) on G protein-regulated ion channels. RGS3 and RGS4 induced a substantial increase in currents through the Gbeta gamma-regulated inwardly rectifying K+ channels, IK(ACh), in the absence of receptor activation. Concomitantly, the amount of current that could be activated by agonist was reduced. Pretreatment with pertussis toxin or a muscarinic receptor antagonist abolished agonist-induced currents but did not modify RGS effects. Cotransfection of cells with a Gbetagamma-binding protein significantly reduced the RGS4-induced basal IK(ACh) currents. The RGS proteins also modified the properties of another Gbeta gamma effector, the N-type Ca2+ channels. These observations strongly suggest that RGS proteins increase the availability of Gbeta gamma in addition to their previously described GTPase-activating function.  相似文献   

17.
We have examined the basis for G-protein modulation of the neuronal voltage-dependent calcium channels (VDCCs) alpha1E and alpha1B. A novel PCR product of alpha1E was isolated from rat brain. This contained an extended 5' DNA sequence and was subcloned onto the previously cloned isoform rbEII, giving rise to alpha1Elong whose N terminus was extended by 50 amino acids. VDCC alpha1 subunit constructs were co-expressed with the accessory alpha2-delta and beta2a subunits in Xenopus oocytes and mammalian (COS-7) cells. The alpha1Elong showed biophysical properties similar to those of rbEII; however, when G-protein modulation of expressed alpha1 subunits was induced by activation of co-expressed dopamine (D2) receptors with quinpirole (100 nM) in oocytes, or by co-transfection of Gbeta1gamma2 subunits in COS-7 cells, alpha1Elong, unlike alpha1E(rbEII), was found to be G-protein-modulated, in terms of both a slowing of activation kinetics and a reduction in current amplitude. However, alpha1Elong showed less modulation than alpha1B, and substitution of the alpha1E1-50 with the corresponding region of alpha1B1-55 produced a chimera alpha1bEEEE, with G-protein modulation intermediate between alpha1Elong and alpha1B. Furthermore, deletion of the N-terminal 1-55 sequence from alpha1B produced alpha1BDeltaN1-55, which could not be modulated, thus identifying the N-terminal domain as essential for G-protein modulation. Taken together with previous studies, these results indicate that the intracellular N terminus of alpha1E1-50 and alpha1B1-55 is likely to contribute to a multicomponent site, together with the intracellular I-II loop and/or the C-terminal tail, which are involved in Gbetagamma binding and/or in subsequent modulation of channel gating.  相似文献   

18.
Heterotrimeric G protein beta gamma subunit (Gbeta gamma) mediates signals to two types of stress-activated protein kinases, c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase, in mammalian cells. To investigate the signaling mechanism whereby Gbeta gamma regulates the activity of JNK, we transfected kinase-deficient mutants of two JNK kinases, mitogen-activated protein kinase kinase 4 (MKK4) and 7 (MKK7), into human embryonal kidney 293 cells. Gbeta gamma-induced JNK activation was blocked by kinase-deficient MKK4 and to a lesser extent by kinase-deficient MKK7. Moreover, Gbeta gamma increased MKK4 activity by 6-fold and MKK7 activity by 2-fold. MKK4 activation by Gbeta gamma was blocked by dominant-negative Rho and Cdc42, whereas MKK7 activation was blocked by dominant-negative Rac. In addition, Gbeta gamma-mediated MKK4 activation, but not MKK7 activation, was inhibited completely by specific tyrosine kinase inhibitors PP2 and PP1. These results indicate that Gbeta gamma induces JNK activation mainly through MKK4 activation dependent on Rho, Cdc42, and tyrosine kinase, and to a lesser extent through MKK7 activation dependent on Rac.  相似文献   

19.
Liddle's disease is an autosomal dominant form of human hypertension resulting from a basal activation of amiloride-sensitive Na+ channels (ENaC). This channel activation is produced by mutations in the beta- and/or gamma-carboxy-terminal cytoplasmic tails, in many cases causing a truncation of the last 45-76 amino acids. In this study, we tested two hypotheses; first, beta- and gamma-ENaC C-terminal truncation mutants (beta DeltaC and gamma DeltaC), in combination with the wild-type alpha-ENaC subunit, reproduce the Liddle's phenotype at the single channel level, i.e., an increase in open probability (Po), and second, these C-terminal regions of beta- and gamma-ENaC act as intrinsic blockers of this channel. Our results indicate that alpha beta DeltaC gamma DeltaC-rENaC, incorporated into planar lipid bilayers, has a significantly higher single channel Po compared to the wild-type channel (0.85 vs 0.60, respectively), and that 30-mer synthetic peptides corresponding to the C-terminal region of either beta- or gamma-ENaC block the basal-activated channel in a concentration-dependent fashion. Moreover, there was a synergy between the peptides for channel inhibition when added together. We conclude that the increase in macroscopic Na+ reabsorption that occurs in Liddle's disease is at least in part due to an increase in single channel Po and that the cytoplasmic tails of the beta- and gamma-ENaC subunits are important in the modulation of ENaC activity.  相似文献   

20.
Interactions of G-protein alpha (Galpha) and beta gamma subunits (Gbeta gamma) with N- (alpha1B) and P/Q-type (alpha1A) Ca2+ channels were investigated using the Xenopus oocyte expression system. Gi3alpha was found to inhibit both N- and P/Q-type channels by receptor agonists, whereas Gbeta1 gamma2 was responsible for prepulse facilitation of N-type channels. L-type channels (alpha1C) were not regulated by Galpha or Gbeta gamma. For N-type, prepulse facilitation mediated via Gbeta gamma was impaired when the cytoplasmic I-II loop (loop 1) was deleted or replaced with the alpha1C loop 1. Galpha-mediated inhibitions were also impaired by substitution of the alpha1C loop 1, but only when the C terminus was deleted. For P/Q-type, by contrast, deletion of the C terminus alone diminished Galpha-mediated inhibition. Moreover, a chimera of L-type with the alpha1B loop 1 gained Gbeta gamma-dependent facilitation, whereas an L-type chimera with the N- or P/Q-type C terminus gained Galpha-mediated inhibition. These findings provide evidence that loop 1 of N-type channels is a regulatory site for Gbeta gamma and the C termini of P/Q- and N-types for Galpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号