首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
基于NSST与自适应PCNN的多聚焦图像融合方法   总被引:1,自引:0,他引:1  
杨利素  王雷  郭全 《计算机科学》2018,45(12):217-222, 250
为弥补传统图像融合方法融合质量不高的缺点,提出了基于非下采样剪切波变换(Nonsubsampled Shearlet Transform,NSST)与自适应脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)的图像融合方法。首先,利用非下采样剪切波变换对源图像进行剪切波分解;然后,采用基于图像引导滤波器的融合规则对得到的低频分量进行低频融合;其次,对于高频分量,采用改进的空间频率作为PCNN的输入,利用改进的拉普拉斯能量和作为PCNN的链接强度;最后,通过NSST逆变换得到融合后的图像。实验结果表明,相比于传统的融合规则,文中提出的算法在主观效果上能很好地保留细节信息,并抑制伪影和失真的产生;在客观评价上,其在标准差、边缘信息传递量、信息熵和互信息等常用指标上的表现更为优越。  相似文献   

2.
针对现存的红外与可见光图像融合算法亮度不均、目标不突出、对比度不高、细节丢失等问题,结合非下采样剪切波变换(NSST)具有多尺度、最具稀疏表达的特性,显著性检测具有突出红外目标的优势,双通道脉冲耦合神经网络(Dual-PCNN)具有耦合、脉冲同步激发等优点,提出一种基于NSST结合视觉显著性引导Dual-PCNN的图像融合方法。首先,通过NSST分解红外与可见光图像各方向的高频与低频子带系数;然后,低频子带系数采用基于显著性决策图引导Dual-PCNN融合策略,高频子带系数采用改进的空间频率作为优化Dual-PCNN的激励进行融合;最后,经过NSST逆变换得到融合图像。实验结果表明,融合图像红外目标突出且可见光背景细节丰富。该方法相比于其他融合算法在主观评价与客观评价上都有一定程度的改善。  相似文献   

3.
针对传统图像融合容易导致目标信息减弱、背景细节不清晰的问题,提出一种基于非下采样剪切波变换(Non-subsampled Shearlet Transform, NSST)和双边滤波的融合算法。首先,利用双边和高斯滤波器处理红外与可见光图像,得到包含红外目标的大尺度边缘图像;然后,采用NSST分解红外与可见光图像,得到相应的高频和低频子带系数,低频部分利用已得的大尺度边缘图像指导加权,高频部分采用绝对值取大的方法;最后将融合后的各频带系数经过NSST逆变换得到融合结果。实验结果显示,该方法既能有效突出红外目标,又充分保留了可见光图像中的背景信息,在信息熵、互信息和峰值信噪比等客观评价指标上也都优于传统的融合算法。  相似文献   

4.
针对传统多尺度融合算法不具平移性、融合效果较差以及PCNN参数设置复杂等问题,提出了一种结合非下采样剪切波变换(NSST)与遗传算法(GA)优化脉冲耦合神经网络(PCNN)参数的图像融合方法,将融合指标(互信息[MI]、边缘信息保留度[QAB/F]、熵[EN]、空间频率[SF]、图像标准差[STD]和图像平均梯度[AG])的最大值设为GA优化算法的目标函数,从而获得最优解对PCNN的链接强度、阈值等参数进行优化。首先利用NSST对图像进行多尺度分解,其次高频采用空间频率引导PCNN进行融合,低频采用改进拉普拉斯能量和(SML)进行融合,最后进行NSST逆变换得到最终的融合图像。根据主观评价与客观评价指标对多聚焦图像、医学图像和红外及可见光图像的融合效果进行评价分析。实验结果表明,该算法在客观评价指标上优于其他算法,有较好的融合效果。  相似文献   

5.
针对遥感图像中对比度低、细节信息缺失和边缘梯度保持能力较弱等问题,提出了一种基于非下采样剪切波变换(NSST)与引导滤波相结合的遥感图像增强算法。首先,原始图像通过NSST被分解成低频子带和高频子带两部分。然后,对低频子带进行线性增强,提高整体对比度;采用自适应阈值法抑制高频子带的噪声,再对去噪后的高频子带进行引导滤波增强,提高图像的细节信息和边缘梯度保持能力。最后,对两部分子带进行NSST反变换,得到增强后的图像。实验结果表明,与直方图均衡、基于Contourlet变换和模糊理论的图像增强算法、基于非下采样Contourlet变换与反锐化掩膜结合的遥感图像增强算法以及基于非下采样Shearlet变换与参数化对数图像处理相结合的遥感图像增强算法相比,该算法的图像信息熵、峰值信噪比(PSNR)和结构相似性(SSIM)都有一定的提升,能明显地改善图像视觉效果,使得图像纹理更加清晰。  相似文献   

6.
为对融合图像的信息丰富度、边缘清晰度以及视觉效果作进一步的提升,设计了一种基于非下采样剪切波变换(NSST)结合非局部均值滤波(NLMF)的多聚焦图像融合算法.首先,将源图像通过NSST变换进行多尺度、多方向分解得到高、低频子带系数.其次,对低频子带系数采用局部区域的改进拉普拉斯能量和以及非局部均值滤波融合方法构建低频...  相似文献   

7.
针对红外与可见光图像融合,提出了一种基于区域能量和修正的视觉特征对比度的低频融合规则,以尽可能多地保留红外图像的热目标信息及可见光图像的光谱信息。实验结果表明,在非下采样轮廓波变换和小波变换域,新的融合规则能都充分利用源图像的互补和冗余信息,使融合图像具有更好的主观视觉效果。  相似文献   

8.
目的 全色图像的空间细节信息增强和多光谱图像的光谱信息保持通常是相互矛盾的,如何能够在这对矛盾中实现最佳融合效果一直以来都是遥感图像融合领域的研究热点与难点。为了有效结合光谱信息与空间细节信息,进一步改善多光谱与全色图像的融合质量,提出一种形态学滤波和改进脉冲耦合神经网络(PCNN)的非下采样剪切波变换(NSST)域多光谱与全色图像融合方法。方法 该方法首先分别对多光谱和全色图像进行非下采样剪切波变换;对二者的低频分量采用形态学滤波和高通调制框架(HPM)进行融合,将全色图像低频子带的细节信息注入到多光谱图像低频子带中得到融合后的低频子带;对二者的高频分量则采用改进脉冲耦合神经网络的方法进行融合,进一步增强融合图像中的空间细节信息;最后通过NSST逆变换得到融合图像。结果 仿真实验表明,本文方法得到的融合图像细节信息清晰且光谱保真度高,视觉效果上优势明显,且各项评价指标与其他方法相比整体上较优。相比于5种方法中3组融合结果各指标平均值中的最优值,清晰度和空间频率分别比NSCT-PCNN方法提高0.5%和1.0%,光谱扭曲度比NSST-PCNN方法降低4.2%,相关系数比NSST-PCNN方法提高1.4%,信息熵仅比NSST-PCNN方法低0.08%。相关系数和光谱扭曲度两项指标的评价结果表明本文方法相比于其他5种方法能够更好地保持光谱信息,清晰度和空间频率两项指标的评价结果则展示了本文方法具有优于其他对比方法的空间细节注入能力,信息熵指标虽不是最优值,但与最优值非常接近。结论 分析视觉效果及各项客观评价指标可以看出,本文方法在提高融合图像空间分辨率的同时,很好地保持了光谱信息。综合来看,本文方法在主观与客观方面均具有优于亮度色调饱和度(IHS)法、主成分分析(PCA)法、基于非负矩阵分解(CNMF)、基于非下采样轮廓波变换和脉冲耦合神经网络(NSCT-PCNN)以及基于非下采样剪切波变换和脉冲耦合神经网络(NSST-PCNN)5种经典及现有流行方法的融合效果。  相似文献   

9.
为最优保留多光谱图像光谱信息的同时,最大限度地融入全色图像的高空间信息,该文提出了一种基于非下采样Contourlet(非自适应方向多尺度分析方法)变换和脉冲耦合神经网络相结合的图像融合的方法。根据目标融合区域地物的空间分布特点,将目标融合区域划分为边缘区域和非边缘区域,并对全色图像和多光谱图像I分量在非边缘区域进行空间域融合,融入更多多光谱图像的光谱信息。然后,对多光谱图像I分量和空间域融合后的图像进行非下采样Contourlet变换,在低频子带和高频子带分别采用区域能量和空间频率作为源图像的原始信息,驱动脉冲耦合神经网络以每个像元的点火数作为活跃性测量,对图像进行融合。实验结果表明:该算法在非边缘区很好地保持了多光谱图像的光谱信息,在边缘区融入了更多的全色图像的空间细节信息,提高了融合图像的空间分辨率。  相似文献   

10.
为了解决可见光与红外图像采用基础拉普拉斯融合(Laplacian Blending)时,存在热源物体的轮廓不清晰以及曝光严重区域图像内容缺失的问题,提出一种保留红外轮廓与梯度信息的图像融合方法。首先,对输入图像进行颜色空间转换和自适应形态学去噪,并将两幅图像的梯度对比和红外图像突出目标的轮廓作为像素活动信息的权值;其次,同时分解权值与输入图像,并采用基于相似度的比较调整权重分配;最后,重构图像并转换颜色空间。在主观评价中,所提方法未产生伪影和怪异色彩,图像中的发热目标轮廓清晰;在客观评价指标中,该方法的熵(EN)为7.49,边缘梯度(EI)为74.61,平均梯度(AG)为7.23,与传统多尺度变换方法(包括非下采样轮廓波变换(NSCT)方法和基于非下采样剪切波变换(NSST)多尺度熵方法)和深度学习方法(结合残差网络(ResNet)与零相位分量分析(ZCA)的图像融合方法)相比,它的EN分别提升了0.10、0.58和0.75,EI分别提升了6.65、20.35和37.35,AG分别提升了0.73、2.19和3.55;而且它在Intel i5系列计算机上的处理速度达到5 frame/s,...  相似文献   

11.
基于PCA的拉普拉斯金字塔变换融合算法研究   总被引:1,自引:0,他引:1  
阐述了基于主元分析的拉普拉斯金字塔图像融合的原理和方法:对原图像分别进行拉普拉斯金字塔分解,分别对高频部分采用主元分析(PCA)法融合,对低频部分采用平均梯度法进行融合,对拉普拉斯金字塔做反变换得到最终的融合图像。通过对可见光与红外图像的融合,以及对不同焦距图像融合的结果分析,该算法比单纯的PCA和拉普拉斯图像融合能得到具有更多有用信息的高对比度的融合图像。  相似文献   

12.
提出一种基于LLF和RBD检测的红外和可见光图像融合方法。运用局部拉普拉斯滤波对红外图像平滑处理和对可见光增强处理,以充分利用红外图像的目标信息和可见光图像的细节信息。在此基础上,采用增强背景检测的RBD显著性检测算法处理红外图像,以很好地检测出目标。此外,为了增强目标信息,减弱背景干扰,对RBD检测的结果进行S曲线变换。然后,对红外和可见光图像应用NSST分解得到高频分量与低频分量。最后,使用S曲线变换后获得的显著图对低频分量进行加权融合,采用绝对值取大的规则对高频分量进行融合。实验结果表明,该方法能够得到红外目标突出,细节增强的融合图像。  相似文献   

13.
基于NSCT的红外与可见光图像融合   总被引:3,自引:0,他引:3       下载免费PDF全文
针对红外与可见光图像的不同特点,提出一种基于非采样Contourlet变换(NSCT)的红外与可见光图像融合算法。采用NSCT对源图像进行多尺度、多方向分解;分别采用基于局部能量和区域特征的融合规则得到融合图像的低频子带系数和带通方向子带系数;最后经过NSCT逆变换得到融合图像。实验结果表明,该算法能够获得较理想的融合图像,其融合效果优于基于Contourlet变换的图像融合算法。  相似文献   

14.
现在是用数字图像进行临床诊断的时代。文章提出了一种结合非采样轮廓波变换(NSCT)和脉冲耦合神经网络(PCNN)优点的肿瘤检测方法。该方法首先分别对一组正常人的脑部CT和MRI图像及一位40岁酗酒男性的脑部MRI和PET图像施行三次样条插值配准,并进行非采样轮廓波变换获取其高频和低频信息。将低频子带系数输入PCNN神经元经计算获得融合图像低频系数,对于高频部分对比度被用于激化PCNN网络。最后经逆NSCT变换生成融合图像,并将该图像用Canny算子进行边缘检测。结果显示第一组的融合图像中高密度组织得到了增强并减少了像素扭曲且肿瘤组织能被检测,第二组的融合图像清晰显示了脑部解剖结构同时壳核、尾状核也到得了明确定位。由于非采样轮廓波变换优良的方向性和几何表达能力,该方法能够为外科医生提供精确的肿瘤定位方案。  相似文献   

15.
针对红外图像与可见光图像融合中容易产生红外目标不明显、对比度不高的问题,提出了一种新的融合算法。该算法创新地将PCNN与区域特征应用到NSCT域内低频和带通子带系数的选择上。通过NSCT分解得到待融合图像的子带系数。运用PCNN对分解后的子带系数进行处理,得到子带系数的点火映射图。低频子带点火映射图采取基于区域标准差的方法选取融合系数。带通子带点火映射图采取基于区域能量的方法选取融合系数。融合图像通过NSCT逆变换可以得到。仿真实验表明与其他算法相比,该算法能够得到红外目标突出、质量更好的融合图像,图像客观评价指标提升明显。  相似文献   

16.
基于NSST 域隐马尔可夫树模型的SAR 和灰度可见光图像融合   总被引:1,自引:0,他引:1  

针对合成孔径雷达(SAR) 图像和可见光图像融合问题, 提出一种基于非下采样剪切波变换域的隐马尔可夫树模型的图像融合方法(NHMM), 图像经过非下采样剪切波变换(NSST) 分解形成一个低频子带和多个高频子带.在NSST 域中, 对低频系数采用基于标准差的融合策略; 针对高频子带, 建立NSST 域隐马尔可夫树(HMT) 模型对高频系数进行训练, 并根据梯度能量对训练后的高频系数进行选择, 最后通过NSST 逆变换得到融合图像. 实验结果表明, 所提出的方法可提高图像的融合质量, 并能降低图像噪声, 具有一定的有效性和实用性.

  相似文献   

17.
提出了一种新的红外与可见光图像融合算法,首先应用非抽样Contourlet变换(NSCT)对图像进行多尺度、多方向变换,对变换的低频子带采用改进的能量加权法融合,带通子带融合采用最大系数与区域方差加权相结合方法,然后对融合的2个子带系数进行NSCT反变换,得到融合图像。对不同算法的融合实验结果进行比较,通过主观和客观评价,该算法融合效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号