首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
支持向量机(SVM)是一种性能良好的机器学习方法,但是对于其参数的选择还缺少系统的理论作为指导。针对经典的SVM参数选择方法--遗传算法的一些不足,提出了改进,并将其与SVM相结合,得到自动选择核参数并进行SVM训练的算法即GA_SJ算法。该算法通过将随机搜索引入到遗传算法当中,并采用最优保存策略和动态的交叉和变异概率,有效地提高了遗传算法的效率。数值实验结果证实了GA_SJ算法在SVM参数优化中的可行性和有效性,而且得到的SVM具有较高的分类性能。  相似文献   

2.
支持向量机参数的选择决定着支持向量机的分类精度和泛化能力,而其参数优化缺乏理论指导,在此背景下提出了ACO-SVM模型。该模型将SVM分类预测准确率作为目标函数,对蚁群算法进行改进,引入有向搜索和基于时变函数更新的信息素更新原则,利用蚁群算法的并行性、正反馈机制和较强的鲁棒性,以求得最优目标并得到SVM的最优参数组合。数值实验结果表明,改进蚁群算法在SVM参数优化选取中具有更好的寻优性能,具有较高的分类准确率;该方法具有较好的并行性和较强的全局寻优能力。  相似文献   

3.
人工鱼群算法在SVM参数优化选择中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
针对支持向量机的参数优化缺乏理论支持,而SVM交叉检验法选取又较为费时的情况下,提出了基于人工鱼群算法的支持向量机参数优化选取算法,并以SVM分类预测准确率最大为优化原则,利用人工鱼群算法的较好并行性和较强的全局寻优能力,以实现最优目标并得到SVM的最优参数组合。数值实验结果表明:人工鱼群算法在SVM参数优化选取中具有更快的寻优性能,同时具有较高的分类准确率。该方法具有较好的并行性和较强的全局寻优能力。  相似文献   

4.
林忠甫  颜力  黄伟  李洁 《计算机科学》2021,48(z1):260-263,284
乌鸦搜索算法(CSA)是近年发展起来的一种新型智能优化算法,具有搜索精度高、收敛速度快等优点,但是其搜索性能对参数依赖性较强,参数的选取对算法的全局搜索能力、收敛速度至关重要.为解决最佳参数的确定问题,首先提出了一种用于表征种群优化算法收敛进程的方法,从而将优化过程分为前、中、后期,并在此基础上提出了一种基于优化过程的...  相似文献   

5.
支持向量机的参数优化一直是一个重要的研究方向。参数的好坏很大程度上决定了支持向量机的分类精度和泛化能力。针对人工鱼群算法优化支持向量机参数时,容易在后期徘徊于最优解附近、难以逼近的问题,提出了人工鱼群加速算法,使用速度参数代替人工鱼步长,从而求得最优目标并得到SVM的最优参数组合。仿真实验结果表明:该算法收敛速度快,求解数值精度高,对初值的依赖程度低,在SVM参数优化中具有更好的性能、更高的分类准确率,是一个极其有效的参数优化方法。  相似文献   

6.
为了改善乌鸦搜索算法(crow search algorithm,CSA)收敛速度慢、收敛精度不足的问题,提出一种混合策略改进的乌鸦搜索算法(MSCSA).首先在算法运行前期引入tent序列扰动的自适应权重系数,提高算法收敛速度;其次在算法后期引入混合黄金正弦与飞蛾扑火算子,避免算法后期陷入局部最优值;最后通过改进算法的发现概率AP,增加算法的随机性从而提高算法的收敛精度.通过在九个基准函数上对比测试,确定迭代系数的取值,通过Wilcoxon秩和测试验证算法性能.实验结果证明,所提出的MSCSA的性能更为优秀.  相似文献   

7.
网络流量建模预测是网络管理和安全预警的基础。为了提高网络流量的预测精度,提出一种改进布谷鸟搜索算法优化支持向量机的网络流量预测模型(MCS-SVM)。首先将一维网络流量时间序列重构成多维时间序列;然后将支持向量机参数看作一个鸟巢位置,通过模拟布谷种群寄生繁衍机制找到最优参数;最后根据最优参数建立网络流量预测模型,并通过仿真实验对MCSSVM的性能进行测试。仿真结果表明,相对于参比模型,MCS-SVM提高了网络流量的预测精度,更加准确地刻画了网络流量复杂变化趋势,为具有混沌性网络流量预测提供了一种新的研究工具。  相似文献   

8.
针对麻雀搜索算法在迭代后期种群多样性减少、易陷入局部最优等问题,提出改进麻雀搜索算法(ISSA)。引入Sobol序列,提高初始种群的多样性;引入黄金正弦算法,平衡全局搜索和局部开发能力;引入高斯差分变异,提高种群跳出局部最优的能力。10种基准函数的测试结果表明,ISSA有着更好的寻优精度与收敛速度。使用ISSA对SVM的超参数进行寻优,构建分类模型并应用于断路器故障诊断,验证了该方法在工程应用上的可行性。  相似文献   

9.
为了解决支持向量机(SVM)参数优化的问题,提出一种改进的基于社会力模型群智能优化算法SFSO(Swarm Optimization algorithm based on Social Force Model)的SVM参数优化方法。SFSO通过期望力和排斥力使算法在全局搜索和局部搜索中能够较好的平衡,利用SFSO特有的搜索机制对SVM的惩罚因子和径向基函数进行优化,提高SVM的分类性能。通过对几个benchmark函数和常用的UCI数据集进行测试表明:改进后的SFSO算法不仅对于求解函数优化问题具有较强的鲁棒性和较高的求解精度,而且经改进SFSO算法优化后的SVM具有更快的收敛速度和更高的分类准确率。  相似文献   

10.
为了提高果蝇优化算法的种群多样性和果蝇搜索的遍历性,有效提高算法的收敛精度,提出一种改进的果蝇算法(Improving fruit fly optimization algorithm, IFOA),仿真实验表明, IFOA算法保持了搜索过程中的搜索尺度变化,平衡了算法的全局与局部搜索能力。在此基础上,为了改善支持向量机模型参数选择的随机性和盲目性,提高模式分类的准确率,提出并建立了一种IFOA-SVM模式分类模型。该方法将IFOA算法引入到支持向量机模型参数优化中,建立性能最优的支持向量机模型。应用该模型对UCI机器学习数据库中wine数据集进行模式分类研究,通过算法对比分析,结果表明:提出的改进果蝇优化算法在收敛速度和寻优效率上均有一定的提高,依此而建立的IFOA-SVM模式分类模型具有较准确的分类准确率,从而也验证了该模式分类方法在wine数据集分类应用中的有效性。  相似文献   

11.
乌鸦搜索算法模拟乌鸦觅食行为对个体位置进行更新与搜索,为降低基本乌鸦搜索位置更新策略本身存在的盲目性,将正弦余弦作为局部优化算子嵌入到基本算法中,提出了正弦余弦指引的乌鸦搜索算法。该算法通过正弦余弦操作使每一个乌鸦个体都可以充分吸收自身与最优个体的位置差信息,有效指引乌鸦个体沿最优值方向趋近最优值,改善算法的收敛效果和寻优精度。并对一系列测试函数进行寻优实验,实验结果表明该改进算法性能良好。  相似文献   

12.
针对万有引力搜索算法存在局部优化能力差的问题,引入混沌序列和遗传算法的交叉思想对其改善,并将其应用于SVM的参数优化,通过仿真实验验证了该SVM模型具有更高的精度.最后将该模型应用于火电厂一次风机的状态监测,实验结果表明该模型是有效的.  相似文献   

13.
邮件集散中心航空运力调度涉及固定运力和备选运力两种调度对象,本文在航空运力资源充足的前提下,建立了以最小化运输成本为目标的优化模型,研究了一种改进的乌鸦搜索算法求解方法.首先根据问题的数学模型,引入惩罚函数法将部分约束转化为惩罚项,与目标函数共同构成适应度函数;然后引入Logistic混沌映射提高初始种群的多样性;根据问题的特点,提出了基于个体最优追随机制和正余弦算法的位置更新策略,并引入交叉变异机制以丰富搜索过程中种群的多样性.通过大量算例实验分析,证明了该算法的有效性与优越性.  相似文献   

14.
针对支持向量机算法在回归预测时由于参数选取不当导致过学习或欠学习的情况,提出一种基于改进遗传算法的支持向量机参数优化模型。该模型将遗传算法与支持向量机结合,利用遗传算法进化搜索的原理对支持向量机具有重要意义的惩罚参数、核参数和损失函数同时优化。实验选取3组标准数据集作为测试数据集,并将改进算法同时与遗传算法、网格寻址算法、粒子群算法进行仿真测试结果对比。实验结果表明改进的算法较大地提高了支持向量机算法整体的寻优能力。  相似文献   

15.
廉杰  姚鑫  李占山 《软件学报》2022,33(11):3903-3916
特征选择是机器学习领域的热点问题.元启发式算法作为特征选择的重要方法之一,其性能会对问题求解产生直接影响.乌鸦搜索算法(CSA)是受乌鸦智能群体行为启发提出的一种元启发式算法,由于其具有简单、高效的特点,广大学者将其用来解决特征选择问题.然而,CSA易陷入局部最优解且收敛速度较慢,严重限制了算法求解能力.针对这一问题,采用logistic混沌映射、反向学习方法和差分进化这3种算子,结合乌鸦搜索算法,提出一种特征选择算法BICSA来选取最优特征子集.实验阶段,使用UCI数据库中的16个数据集来测试BICSA的性能.实验结果表明,与其他特征选择算法相比,BICSA求得的特征子集具有更高的分类准确率和较高的维度压缩能力,这说明BICSA在处理特征选择问题上具有很强的竞争力与足够的优越性.  相似文献   

16.
乌鸦搜索算法作为新提出的元启发式智能算法,其寻优方式模拟了乌鸦间相互跟随窃食的行为。为了提高算法的收敛精度、后期搜索能力等,基于传统乌鸦搜索算法提出一种新的混合乌鸦搜索算法,其核心思想是在算法中加入共享机制,改进原始算法中随机追踪的位置更新方式,降低搜索盲目性,提高收敛速度;在不同的迭代阶段对全局最优位置进行大小不同的扰动操作,有效提高了跳出局部最优的概率,保证算法全局搜索能力与局部搜索能力的平衡。最后通过8个基准函数对5种算法搜索性能在10、30、50维的情况下进行对比分析,结果表明该改进算法的综合表现要优于其他算法。  相似文献   

17.
混沌优化算法是一种有效的全局优化算法,其计算复杂度较低,搜索速度快。支持向量机是近年来新兴的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出了突出的优点。但支持向量机的识别性能对于参数的选择是敏感的,提出用混沌优化算法来优化支持向量机的参数,不仅提高了支持向量机的性能,而且解决了传统的选取参数方法计算量大、参数多时难以奏效的问题。仿真结果表明性能较好、计算量较少。  相似文献   

18.
在实际应用中,支持向量机的性能依赖于参数的选择。针对支持向量机的参数选择问题进行了研究和分析,提出了基于均匀设计的支持向量机参数优化方法。与基于网格搜索、粒子群算法、遗传算法等支持向量机参数优化方法进行了比较与分析,采用多个不同规模的标准的分类数据集进行测试,比较了四种方法的分类正确率和运行时间。仿真实验表明,四种方法都能找到最优参数,使支持向量机的分类正确率接近或超过分类数据集的理论精度,本文方法具有寻参时间短的特点。  相似文献   

19.
潘丰  毛志亮 《控制工程》2011,18(2):267-269,274
支持向量机(SVM)建模的拟合精度和泛化能力取决于相关参数的选取,目前SVM中的参数的寻优一般只针对惩罚系数和核参数,而混合核函数的引入,使SVM增加了一个可调参数.针对混合核函数SVM的多参数选择问题,提出利用具有较强全局搜索能力的混沌粒子群(CPSO)优化算法对混合核函数SVM建模过程中的重要参数进行优化调整,每一...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号