共查询到19条相似文献,搜索用时 62 毫秒
1.
柔性作业车间调度问题具有解集多样化与解空间复杂的特点,传统多目标优化算法求解时容易陷入局部最优且丢失解的多样性。在建立以最大完工时间、最大能耗、机器总负荷为优化目标的柔性作业车间调度模型的情况下,提出一种改进的非支配排序遗传算法(Improved Non-dominated Sorting Genetic Algorithm II, INSGA-II)求解该模型。INSGA-II算法先将随机式初始化与启发式初始化方法混合,提高种群多样性;然后对工序部分与机器部分采用针对性的交叉、变异策略,提高算法全局搜索能力;最后设计自适应的交叉、变异算子以兼顾算法的全局收敛与局部寻优能力。在mk01~mk07标准数据集上的实验结果显示INSGA-II算法有着更优的算法收敛性与解集多样性。 相似文献
2.
柔性作业车间调度问题(Flexible Jobshop Scheduling Problem,FJSP)是经典的NP-hard(Nondeterministic Polynomial-time hard)问题,针对该复杂问题,需要建立一个多目标的数学模型,采用灰狼优化算法对柔性作业车间的加工完成时间、总耗能和总机器负荷这三个目标进行优化,以加工完成时间、总耗能和总机器负荷作为研究目标。灰狼优化算法(GWO)是一种具有较高的寻优精度和收敛速度的算法,在此基础上对灰狼优化算法的初始化种群进行改进,为了使灰狼算法适用于多目标问题,与非支配排序遗传算法结合,引入非支配排序与拥挤度的概念,用于灰狼算法对种群的更新。对柔性作业车间调度算例进行测试,结果表明改进的灰狼算法针对多目标柔性作业车间调度可以找到最优解,以较少的迭代次数找到最小加工时间、最小总耗能及最小总机器负荷,对车间调度问题进行了优化。 相似文献
3.
针对加工时间为模糊数的柔性作业车间调度问题,考虑最小化模糊最大完工时间、模糊机器总负荷、模糊关键机器负荷为优化目标,提出一种有效求解该类优化问题的多目标进化算法。算法采用一种混合不同机器分配和工序排序策略的方法产生初始种群,并采用插入空隙法对染色体进行解码。定义一种新的基于可能度的个体支配关系和一种基于决策空间的拥挤算子,并将所提支配关系和拥挤算子运用于快速非支配排序。接着,提出一种基于移动模糊关键工序的局部搜索策略对种群中的优势个体进行局部搜索。通过试验研究关键参数对算法性能的影响并将所提算法与3种不同的优化算法作对比。结果表明,所提算法能够比其它算法更有效解决多目标模糊柔性作业车间调度优化问题。 相似文献
4.
柔性作业车间调度问题是生产管理领域和组合优化领域的重要分支.本文提出一种基于Pareto支配的混合粒子群优化算法求解多目标柔性作业车间调度问题.首先采用基于工序排序和机器分配的粒子表达方式,并直接在离散域进行位置更新.其次,提出基于BaldWinian学习策略和模拟退火技术相结合的多目标局部搜索策略,以平衡算法的全局探索能力和局部开发能力.然后引入Pareto支配的概念来比较粒子的优劣性,并采用外部档案保存进化过程中的非支配解.最后用于求解该类问题的经典算例,并与已有算法进行比较,所提算法在收敛性和分布均匀性方面均具有明显优势. 相似文献
5.
针对多目标柔性作业车间调度问题,以最小化最大完工时间、最小化机器总负荷、最小化机器最大负荷为目标,提出一种改进邻域结构的离散萤火虫算法。首先,采用多种策略相结合的方式初始化种群,提高算法初始解质量以及种群多样性;其次,通过改进关键路径的邻域结构并设计离散萤火虫算法的位置更新公式,以增强算法全局搜索和局部搜索能力;最后,将该算法应用于标准数据集,并将求解结果与其他算法进行对比,验证了所提算法的有效性。 相似文献
6.
7.
目前已经有许多解决作业车间调度问题的启发式求解方法,但这些方法多数局限于单目标,因此不能满足现实生活中多目标作业车间调度问题的应用需求.提出一种改进的蚁群算法启发式地搜索多目标车间作业调度问题的近似最优解以满足实际的应用需求.通过对转移概率以及信息素更新方式进行改进,并融合交叉策略,确保算法在加快搜索收敛速度的同时又避免陷入局部最优.仿真实验证明,改进的算法具有较好的性能,能够解决实际生活中的多目标作业车间调度问题. 相似文献
9.
10.
针对柔性作业车间调度问题中最大完工时间、机器最大负荷和总机器负荷三项性能指标,提出一种改进的自适应交叉和变异的混合遗传算法。在基本遗传算法染色体编码的基础上,设计一种基于海明距离的调度个体差异判别方法,并通过自适应交叉阈值和动态变异概率计算提高遗传算法整个种群调度个体的多样性,防止算法过早的进入早熟。在遗传算法进化期间,对每个调度个体的进化采用变邻域搜索算法,扩大调度个体的邻域搜索范围。最后,使用文献中相同的调度实例将本文的计算结果与其它文献中的测试结果进行比较,验证了所提出的算法的可行性和有效性。 相似文献
11.
12.
求解车间作业调度问题的一种改进遗传算法 总被引:1,自引:0,他引:1
针对标准遗传算法收敛速度慢和易陷入局部最优的问题,在总结已有经验的基础上对标准遗传算法提出改进:采用基于工序的编码、解码方式,每一次遗传操作后对种群采用循环选择并保留最优个体,对交叉操作和变异概率的计算提出了一系列改进方法,避免遗传算法产生无用解或陷入局部优化,以提高效率。通过实验验证,改进后的算法具有可行性,并且可以得到十分满意的结果。 相似文献
13.
14.
作为新兴的智能算法,蝗虫优化算法在作业车间调度问题中的应用符合智能制造的趋势。但由于全局寻优能力不足,基本蝗虫优化算法(GOA)在解决作业车间调度问题(JSP)时容易陷入局部最优,导致收敛精度较低。为了克服上述缺陷,利用量子旋转门操作对其进行改进,提出了一种基于量子计算思想的混合蝗虫优化算法(HGOA)。此外,对混合蝗虫优化算法进行了计算复杂度分析与全局收敛性证明,并利用11个作业车间标准测试问题进行了仿真实验。通过与基本蝗虫优化算法(GOA)、鲸鱼优化算法(WOA)、布谷鸟搜索算法(CS)、灰狼优化算法(GWO)的比较发现,混合蝗虫优化算法在平均值、最小值、寻优成功率及迭代次数方面存在较优结果。研究表明,混合蝗虫优化算法具有更强的全局搜索能力,更好的收敛精度,能够有效跳出局部最优。 相似文献
15.
16.
作业调度问题(JSP)是一类典型的NP-hard问题,遗传算法作为一种通用的优化算法在求解JSP中得到了广泛的应用。本文主要针对作业车间调度问题,基于改进的遗传算法 ,根据种群的进化状况,从而确定种群的适应度值,使之能够保持种群的多样化。 相似文献
17.
18.
本文提出了用于解决车间作业调度问题的混合自适应变异粒子群算法,该算法在运行的过程中根据群体适应度方差以及当前最优解的大小来确定当前最佳粒子的变异概率,利用遗传算法思想对粒子进行选择、交叉操作,并将模拟退火算法的优点融入到AMPSO算法中。仿真结果表明,混合AMPSO算法能够有效地、高质量地解决作业车间调度问题。 相似文献
19.
针对车间调度问题,提出了一种2阶段混合粒了群算法(TS-HPSO).该算法在第1阶段为每个粒子设置较大的惯性系数w,同时去掉了粒子的社会学习能力,从而保证每个微粒在局部范围内充分搜索.第2阶段的混合粒子群算法以第1阶段每个粒子找到的最好解作为初始解,同时以遗传算法中的变异操作保证粒了多样性;为保证算法的寻优能力,对全局gbest进行贪婪邻域搜索.计算结果证明了本算法的有效性. 相似文献