首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
在本文中,提出了采用粒子群算法来优化RBF神经网络,并建立了这种新的混合模型。在这个粒子群和RBF神经网络的混合模型中,粒子群优化算法应用于选择中心节点和隐藏节点的宽度以及输出向量方面,对RBF神经网络建立了5个输入节点,6个隐藏节点和一个输出节点。通过对粒子群优化的RBF神经网络模型对一些地区的结核病发病趋势进行预测,得出这种混合模型对结核病发展趋势进行预测能够取得较好的预测结果。  相似文献   

2.
基于混合粒子群算法的RBF神经网络参数优化   总被引:2,自引:0,他引:2  
岳恒  张海军  柴天佑 《控制工程》2006,13(6):525-529
针对径向基函数(RBF)神经网络中心参数的优化问题,提出了一种混合粒子群优化算法。该算法应用灰色关联理论定义了粒子群的灰色相似度,分两个阶段对标准的粒子群优化算法(PSO)的全局和局部搜索能力做了改进和提高。在仿真实验中,应用该方法对典型的Mackey-Glass混沌时间序列进行了预测。并与标准的K均值算法、遗传算法和粒子群算法进行了比较,其结果表明,所预测的各项误差均低于其他常规算法的预测结果。  相似文献   

3.
磨机负荷是评价磨机运行状态和预测磨机行为的重要指标,针对粉磨机磨矿过程中负荷难以检测和不能准确判断负荷状态的问题,提出了一种基于改进型粒子群算法(Improved particle swarm optimization, IPSO)优化径向基神经网络(Radial Basis Function,RBF)参数的磨机负荷预测模型(IPSO-RBF),使惯性权重因子在迭代过程中非线性下降,平衡局部搜索能力与全局搜索能力之间的矛盾,该算法能快速准确地找到最优解,提高粉磨机磨机负荷的预测精度。通过水泥厂的实测数据实验对比,结果表明,基于IPSO-RBF模型的预测精度最高,其预测结果与真实值相比较,均方根误差(Root Mean Square Error,RMSE)、均方误差(Mean Square Error,MSE)、平均绝对误差(Mean Absolute Error,MAE)、平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)和决定系数(coefficient of determination,)分别为0.210 2、0.044 2、0.161 7、1.778%和0.978 2。  相似文献   

4.
张伟  黄卫民 《控制与决策》2021,36(9):2305-2312
针对径向基神经网络结构和参数的动态优化问题,提出一种基于敏感度分析和粒子群优化的RBF神经网络(SAPSO-RBF)优化算法.算法通过初始化各粒子信息数,基于粒子敏感度分析,对算法学习阶段粒子信息进行增加和删减,确定第一次收敛时网络结构大小;算法达到收敛后,对最优粒子进行敏感度分析,删除冗余信息,使算法重新发散;根据算...  相似文献   

5.
为了更精确地检测出混沌背景下的微弱目标信号,提高预测效果,文中提出了一种混沌混合粒子群优化RBF神经网络(CHPSO-RBFNN)算法。本算法主要采用了基于群体自适应变异和个体退火操作的混沌粒子群优化RBF神经网络,利用群体自适应变异以及个体退火操作优化混沌粒子群,有效地提高了粒子群算法的全局收敛性,优化了RBF神经网络的结构和参数。把该算法用于预测混沌时间序列、检测混沌背景下微弱目标信号,实验结果表明本算法有良好的非线性预测能力,可以有效地检测出混沌背景下的微弱目标信号。  相似文献   

6.
神经网络基于粒子群优化的学习算法研究   总被引:24,自引:0,他引:24  
研究神经网络基于粒子群优化的学习算法,将粒子群优化算法用于神经网络的学习训练,并与遗传算法进行了比较,结果表明,神经网络基于粒子群优化的学习算法简单容易实现,而且能更快地收敛于最优解。  相似文献   

7.
粒子群优化RBF神经网络的短时交通流量预测   总被引:4,自引:1,他引:4  
根据交通流量数据具有非周期性、非线性和随机性等特点,为了更准确地对交通流量进行预测,实现交通智能控制和规划是主要问题.交通流量预测中存在容易陷入局部极小值、收敛速度慢,泛化能力差等问题,影响了交通流量预测的实用性和准确性.提出基于粒子群(PSO)优化RBF神经网络的交通流量预测方法.利用PSO算法操作简单、容易实现等特点及其深刻的智能背景,对RBF神经网络的参数(中心和宽度)、连接权重进行优化,并用经PSO算法优化的RBF神经网络对短时交通流量进行仿真预测,仿真结果表明,PSO算法优化的RBF神经网络具有较高的预测精度,比RBF预测模型精度高、收敛快.PSO算法优化的RBF神经网络,适用于短时交通流量预测,预测精度较高,具有推广应用价值.  相似文献   

8.
轴承是当代机械设备中一种重要零部件。轴承故障是机械设备故障的来源之一,因此对轴承故障的诊断研究具有重要意义。文章提出了一种基于粒子群优化径向基函数(Radial Basis Function,RBF)神经网络的算法,先用小波包分解将源信号分解成独立信号源,再构建独立特征值,将特征值输入RBF和改进后的RBF中识别故障。实验结论表明,改进后的算法有较好的故障诊断能力。  相似文献   

9.
综合改进的粒子群神经网络算法   总被引:5,自引:0,他引:5  
粒子群优化算法是一种解决非线性、不可微和多峰值复杂优化问题的优秀算法,但该算法在进化后期容易出现速度变慢以及早熟的现象;BP神经网络的学习算法是基于梯度下降这一本质的,因此存在着容易陷于局部极小值,收敛速度慢,训练时间长等问题.针对上述现象,对粒子群优化算法进行了增强粒子多样性和避免种群陷入早熟两个方面的改进,并提出了一种基于改进算法的粒子群神经网络算法,最后通过在IRIS数据集上进行的仿真实验验证了改进的有效性.  相似文献   

10.
针对已有神经网络功放建模的建模精度不高,易陷入局部极值等问题,提出一种新的改进并行粒子群算法(Improved Parallel Particle Swarm Optimization,IPPSO)。该算法在并行粒子群算法的基础上引入自适应变异操作,防止陷入局部最优;在微粒的速度项中加入整体微粒群的全局最优位置,动态调节学习因子与线性递减惯性权重,加快微粒收敛。将该改进算法用于优化RBF神经网络参数,并用优化的网络对非线性功放进行建模仿真。结果表明,该算法能有效减小建模误差,且均方根误差提高19.08%,进一步提高了神经网络功放建模精度。  相似文献   

11.
RBF神经网络的混合微粒群学习算法   总被引:2,自引:0,他引:2  
在分析RBF神经网络的结构特点基础上, 定义一个布尔向量L作为网络的结构参数, 与原来RBF神经网络的隐节点参数集一起构成了新的RBF网络隐节点参数集{c,σ, L}, 并给出了一个新的RBF网络输入输出关系表达式;采用一种混合协同微粒群算法同时对RBF网络拓扑结构和隐层节点参数进行优化设计,并将输出线性参数集分离后采用最小二乘法进行优化设计,简化了优化空间,加速了算法的收敛速度.  相似文献   

12.
本文研究神经网络在光伏电池建模优化问题。由于光伏电池具有高度非线性特性,其输出功率受到外界自然因素的影响,使得传统方法不能满足光伏控制系统动态要求。针对上述问题,本文提出一种粒子群优化的神经网络光伏电池建模算法。改进的方法以日照、温度和负载电压作为提出的RBF神经网络模型的输入值,把光伏电池的输出功率作为神经网络的输出,采用RBF神经网络对光伏电池进行建模,同时利用粒子群算法对神经网络参数进行优化,最后建立光伏电池的动态响应模型。仿真实验结果证明,所提模型更好地克服传统方法的缺点,收敛速度快,具有较高的预测精度和适合能力。  相似文献   

13.
一种优化模糊神经网络的多目标微粒群算法   总被引:1,自引:0,他引:1  
模糊神经网络优化是一个多目标优化问题.通过对模糊神经网络和微粒群算法的深入分析,提出了一种多目标微粒群算法.在算法中将网络的精确性和复杂性分别作为目标进行优化,再用一种启发性分量加权均值法来选取个体极值和全局极值.算法能够引导粒子较快地向非劣最优解区域移动并最终获得多个非劣最优解,为模糊神经网络的精确性和复杂性的折中寻优问题提供了一种解决方法.茶味觉信号识别的仿真实验验证了该算法的有效性.  相似文献   

14.
摄像机标定是从二维图像提取三维空间信息的关键步骤,标定的精度直接关系到三维重构结果的逼真程度。为了有效解决传统摄像机标定算法中的多参数、计算费时费力等问题,提高摄像机标定的精度和速度,将粒子群遗传算法(particle swarm optimization genetic algorithm,PSO-GA)应用于摄像机标定中。对参数进行粒子群算法优化后,再使用遗传算法中的选择、交叉和变异等操作进行参数优化,以实现粒子群算法与遗传算法的融合。结合后的算法全局搜索能力较强,收敛速度更快,优化能力与鲁棒性得以提高。同时,基于神经网络的摄像机标定方法所能覆盖的标定空间十分有限,提出了一种采用粒子群遗传算法优化BP神经网络的摄像机标定方法,以解决传统摄像机标定方法难以解决的问题。实验数据表明,基于粒子群遗传算法的BP神经网络标定是一种可行的方法,标定精度高,收敛速度快,泛化能力强。  相似文献   

15.
16.
本文提出了改进的粒子群优化算法(Improved Particle Swarm Optimization,IPSO)的新型BP 小波 神经网络,并且对非线性辨识问题进行了仿真实验.实验结果表明,基于改进的粒子群优化算法的BP 小波网 络不仅具有小波分析良好的局部特性以及神经网络的学习、分类能力,而且具有粒子群优化算法全局快速寻 优的特点.与简单的粒子群优化算法相比,该方法在收敛性和稳定性方面都有了较明显的提高,验证了它的 合理性和有效性.  相似文献   

17.
针对BP神经网络在学习算法中的不足,将BP神经网络的权值和阀值训练问题转换为优化问题,提出一种利用二阶微粒群算法优化的神经网络的算法。其次,运用基于二阶微粒群算法训练的神经网络模型对混沌系统进行辨识,并与传统的BP神经网络、RBF网络对同一混沌系统辨识的结果进行比较。实验表明,利用二阶微粒群优化算法训练神经网络进行混沌系统辨识,辨识的效果优于其它几种神经网络模型,可有效用于混沌系统的辨识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号