首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
基于小波变换的纹理图像分割   总被引:8,自引:1,他引:8  
基于小波的纹理图像分割方法是把小波变换应用于纹理的特征提取。通过对原始纹理图像进行高阶小波分解,构成每个象素对应一个特征矢量,对所提取的特征利用均值举类算法进行分类,最终获得图像的分割结果。为了提高纹理分割图像的边缘准确性和区域性以及降低分割错误率,提出了利用特征加权来进行后分割的方法。  相似文献   

2.
一种基于纹理的图像分割方法   总被引:6,自引:0,他引:6  
提出了一种基于多进制小波变换的纹理特征提取方法,通过对小波系数的标准差作为纹理测度以生成特征向量,利用模糊c-均值聚类算法进行纹理分割,获得了较好实验结果。  相似文献   

3.
针对纹理图像,本文提出了一种基于图像纹理特征的非学习分割方法。采用小波变换和快速k-means聚类分割算法,减少了整个处理过程的运算量。为了保证分类算法的精确性,运用了总体流量变化最小(Total Variation Flow)[1]非线性去噪方法对图像进行预处理,从而将减小图像噪声污染带来的分割误差。在图像特征的提取上,运用Gabor滤波器原理生成滤波空间,并让图像通过滤波空间而生成特征向量空间。通过制定一个快速寻优策略,从而达到分割图像的目的。  相似文献   

4.
多进制小波分析是二进制小波理论的推广和延伸,因此其在很多方面具有比二进制小波更优良的特性.本文提出了一种基于多进制小波变换的纹理特征提取方法,通过对小波系数的标准差作为纹理测度以生成特征向量,利用C-均值聚类算法进行纹理分割.实验结果好于二进制小波.  相似文献   

5.
一种基于三进制小波变换的纹理分割方法   总被引:2,自引:1,他引:2  
提出了一种基于三进制小波变换的纹理特征提取方法,多纹理图像经过三进制小波滤波器组后得到九个子带图像,采用小波系数的标准差作为纹理测度以生成特征向量,利用常规的C-均值聚类算法进行纹理分割,实验结果表明了该特征提取方法的有效性。  相似文献   

6.
基于离散平稳小波变换和FCM的纹理图像分割   总被引:1,自引:0,他引:1  
蔡振江  王渝  张娟 《计算机工程》2005,31(15):142-143,150
采用离散平稳小波变换对纹理图像进行分解,以各层小波系数中能量为特征相向量,采用模糊c-均值聚类(FCM)对图像分割,并对分割方法进行了改进,提出采用网格法,将图像分解成若干子图像,对图像进行粗分割,再对边缘部分的网格进行细分的两步分割法。试验结果表明该方法显著提高了分割速度和精度。  相似文献   

7.
基于小波变换和kd树聚类的快速纹理分割算法   总被引:1,自引:0,他引:1  
提出了一种基于小波变换和k均值聚类的快速纹理图像分割算法。该方法包括特征提取、特征平滑、纹理分割三个阶段。其中,特征提取在金字塔结构小波变换的基础上进行;特征平滑利用一种四分法来完成特征图像的噪声平滑和边缘保持;纹理分割则利用kd树作为数据结构来运行k均值聚类算法从而实现纹理图像的快速分割。实验结果表明与直接的k均值聚类算法相比,该方法在运行时间上得到了明显的提高。  相似文献   

8.
基于小波变换的图像纹理特征提取技术   总被引:2,自引:1,他引:2  
纹理是一种区域特征,是对于图像各像元之间的空间分布的一种描述.由于纹理能充分利用图像信息,无论从理论上或常识上出发它都显然应该成为描述与识别图像的重要依据,同时与其它图像特征相比,它似乎能更好地兼顾图像宏观性质与细微结构两个方面,因此纹理分析成为图像分析的重要手段.它被广泛的应用于气象云图分析、卫星遥感图像分析、机器人视觉、工业监控、场景分析、辅助医疗、生物组织和细胞的显微镜照片分析和军事目标分析等诸多领域.  相似文献   

9.
利用小变换和特征加权进行纹理分割   总被引:14,自引:0,他引:14       下载免费PDF全文
为了提高纹理图象分割的边缘准确性和区域一致性以及降低分割错误率,提出了一种基于小波变换的利用特征加权来进行纹理分割的方法。该方法包括特征提取、预分割和后分割3个阶段,其中,特征提取在金字塔结构小小以变换的基础上进行;预分割利用均人矣类算法来对原始图象进行初步的分割;后分割则根据预分割的结果对特征进行加权,然后利用最小距离分类器来实现图象的最后分割。与传统的方法相比,该方法在分割错误率、边缘准确性以及区域一致性等方面均有明显的改善。  相似文献   

10.
综合纹理和颜色的图像分割方法   总被引:1,自引:0,他引:1  
本文基于Gabor小波变换,综合图像的纹理和颜色信息,提出了一种简单的图像分割方法。实验结果表明,这种方法能够很好的处理纹理图像和弱纹理图像,对于简单的自然图像也有良好的分割效果。  相似文献   

11.
基于均值漂移的自适应纹理图像分割方法   总被引:2,自引:0,他引:2  
王爽  夏玉  焦李成 《软件学报》2010,21(6):1451-1461
提出了一种基于小波多尺度分析和均值漂移的无监督纹理分割方法.该方法利用均值漂移聚类实现基于小波特征的完全无监督自适应多尺度分割,既不需要进行训练也不需要分割类别数等先验知识.该方法根据一定的策略在尺度间进行信息传递,自适应地为图像不同区域确定合适的分割尺度,即纹理内部区域使用粗尺度特征而不同纹理间的交界处使用较细尺度特征,这样就在保证区域一致性的同时更准确地定位图像边缘.对比实验结果表明,该方法在合成纹理和真实纹理图像中都有较好的性能,其多尺度的分割过程类似于人类视觉系统感知,并且较之有监督的传统分割方法也更具优势.  相似文献   

12.
基于分形特征纹理图像分割方法   总被引:2,自引:0,他引:2  
基于地毯法估计分形维数,提出了图像局部分形维数的最优估计方法。然后利用边缘信息和区域增长的方法,对自然场景的分形维数图像进行分割。仿真实验表明该方法分割效果很好,优于基于Hurst变换分割方法。  相似文献   

13.
文章提出了一种有效的基于颜色和纹理综合特征的图像分割方法。将图像以块为单位进行划分,在YUV空间,提取块的颜色特征和纹理特征,在这种综合特征基础上,采用改进的K均值聚类法进行图像分割。该方法能自适应确定聚类中的参数,且兼顾点的位置连通关系,从而达到了较好的分割效果。  相似文献   

14.
基于分形理论和Kohonen神经网络的纹理图像分割方法   总被引:11,自引:0,他引:11  
分形理论作为描述自然现象的一种模型,受到人们越来越多的重视。该文提出采用分形维数和多重分形广义维数谱q-D(q)作为纹理特征,采用自组织神经网络Kohonen网络作为分类器的图象分割方法。通过对纹理图象的分割实验,结果令人满意,证实该方法的有效性。  相似文献   

15.
基于商空间的纹理图像分割   总被引:3,自引:0,他引:3  
商空间理论是新近兴起的基于人工智能研究领域的一个很有潜力的方向。文中将商空间理论应用于纹理图像的分析,通过对纹理的区域结构特征分析研究,提出基于象素8-邻域周期排列的纹理区域特征,并对结构性多纹理图像进行了分割实验,效果令人满意。文章总结了运用商空间理论求解复杂问题一般过程,说明了该理论在实际应用中的重要价值。  相似文献   

16.
纹理图象的分割分类方法是目前图象处理和机器视觉研究中的一个前沿课题,传统方法大多基于形态结构和统计描述,与人类视觉机理相脱节,无法进一步提高分精度。本文介绍了近几年来兴起的一类全新的方法,即基于空间/空间频率(s/sf)平面的多信道滤波法,这类方法与人类视觉机理很好的吻合,对于人工纹理和自然纹理都能获很好的分割效果。  相似文献   

17.
在分形维数的基础上研究了将其用于纹理分割的方法。采用差分盒维数(DBC)方法和一种改进的边缘保持算法计算象素点的分形维数FD,基于原始图象的方向性差分和多重分形的概念提取出一组特征,并将Kohonen的SOFM网用于对得到的图象特征矢量进行分类,得到了较好的纹理图象分割效果。最后和特征平滑与K均值聚类方法的结果进行了比较  相似文献   

18.
一种彩色纹理图像的分割方法   总被引:7,自引:0,他引:7  
纹理分析一直是图像理解和计算机视觉等领域研究的重点和难点,现有的纹理分割方法大多集中于研究灰度纹理图像,文中提出一种基于分形理论的BP神经网络原彩色纹理图像分割方法,该方法将彩色图像由RGB色彩空间转换为HSI色彩空间,根据亮度计算分数维、多重分形广义维数谱q-D(q)和“空隙”等纹理特征,同时加入归一化的色度和饱和度作为另外两个分类特征,采用经过有监督训练的BP神经网络作为分类器,通过对纹理图像的分割实验,结果证实该方法行之有效。  相似文献   

19.
基于高斯混合模型的纹理图像分割   总被引:11,自引:0,他引:11       下载免费PDF全文
纹理图像分割是图像处理的一个基本问题。由于基于高斯混合模型的纹理图像分割方法.大多采用单像素的方法,因此分割精度和效率都较低。为了更好地进行纹理图像分割,在子空间思想的基础上,提出了一个基于图像块的分割算法及其改进算法,即先取图像块的均值、标准差、最大值、最小值以及中间像素的像素值等5个特征作为纹理特征,再利用高斯混合模型进行纹理图像分割,实验结果表明,该新算法的分割精度和分割效率较原分割算法都有较大提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号