首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
国外动态     
<正> 由CO_2合成C_2-C_5脂肪烃的新工艺Appl。Catalysis,31[1],13(1987).日本东京大学开发成功由 CO_2合成 C_2—C_5脂肪烃的新工艺。新工艺的关键是杂化催化剂,它由 Cu-Zn 甲醇合成催化剂与高硅分子筛 DAY(SiO_2/Al_2O_3=11)化合而成。将此催化剂装入不锈钢固定床反应器中,在反应温度为320℃、反应压力为21大气压、H_2/CO_2=2(摩尔比)的反应条件下,由CO_2和H_2可选择合成C_2—C_5脂肪烃。其选择性高达90%以上,产物组成分布主要  相似文献   

2.
C_4烃类在ZSM-5分子筛催化剂上的芳构化(Ⅰ)   总被引:5,自引:0,他引:5  
本文为综合利用C_4烃类以扩大芳烃来源探索了新的途径。研究了HZSM-5分子筛催化剂的制备条件对C_4烃类芳构化催化活性的影响,以及反应条件对反应产物分布的效应,并对C_4烃类在HZSM-5分子筛催化剂上的芳构化过程作了初步探讨。试验结果表明:分离掉丁二烯后的混合C_4烃类可用作制备芳烃的原料,在反应温度530—550℃,重量空速1.7小时~(-1)左右,以及常压不临氢条件下连续反应8小时,总芳烃平均收率为49—55%(重),C_6—C_8芳烃平均收率为46—53%(重)。液态烃中芳烃含量达96—98%(重),尾气主要由H_2,CH_4,C_2H_6,C_2H_4,C_3H_8所组成。  相似文献   

3.
研究了以NaCl/Sm_2O_3NaCl/MgO及NaCl-SmCl_3/MgO等为催化剂在常压下于680—790℃温度范围内甲烷氧化偶联制C_2烃(C_2H_6+C_2H_4)的反应。发现,使用20%(mol)NaCl/MgO催化剂在CH_4:O_2=1:2:5,气体流速为50ml/min(W/F=2.4g·s/ml)及温度为790℃时,C_2产率达25.8%,其中C_2H_4在80%以上。NaCl-SmCl_3/MgO也是值得重视的催化体系。  相似文献   

4.
目的回收利用炼厂燃料气中的C_(3)+及H_(2),提高经济效益。方法通过对不同来源的燃料气分析对比,找出其中富H_(2)、高C_(3)+燃料气。优化H_(2)利用及回收流程,增加脱氢膜面积,提高H_(2)回收量。利用催化装置和焦化装置的吸收稳定系统回收燃料气中的C_(3)+。结果技改总投资320万元,可回收C_(3)+1.23×10^(4) t/a,增效3000万元/年;H_(2)回收量可增加1050×10^(4) m^(3)/a,降低制氢成本1200万元/年。结论该方案充分利用炼厂现有吸收稳定系统及现有脱氢系统扩容,具有投资少、效益好、见效快的优点,对玉门炼化总厂高质量发展具有重要意义。  相似文献   

5.
本文研究了在Fe/活性炭催化剂上CO_2加氢制烃类的反应性能。分别考察了反应温度为300~350C、反应压力为0.75~2.5MPa、空速为320~1300h~(-1)、H_2/CO_2配比为0.95~3.3对CO_2加氢反应性能的影响;并与CO加氢反应进行了比较。结果认为,反应温度、反应压力、空速较高,H_2/CO_2配比较低时,烃收率较高。反应压力及H_2/CO_2配比较低、空速较高时,易生成烯烃。产物主要是C_2~C_4烃类。  相似文献   

6.
《天然气化工》2017,(3):7-11
在固定床反应器中,用ZSM-5催化剂研究甲醇与C_6~C_7烷烃(正己烷、正庚烷、环己烷)耦合反应,考察了不同质量比和反应温度对甲醇与正己烷耦合反应的转化率和产物分布影响。结果表明:反应产物种类与加入烷烃比例和种类无关;随着甲醇对正己烷质量比的增加,甲醇转化率不变,正己烷转化率减小,C_5+选择性增大,芳烃选择性先增大后减小;随着温度的增加,甲醇转化率均为100%,正己烷转化率增大,C_5+选择性减小,芳烃选择性先增大后减小;C_6~C_7烷烃的种类不影响甲醇的转化率,而正庚烷、正己烷、环己烷的转化率依次减小。  相似文献   

7.
选取正二十烷、正二十四烷、正二十八烷、正三十二烷4种C_(16+)重质正构烷烃,分别与CO_2组成二元体系,通过系列恒质膨胀实验,获取各体系的泡点压力,分析了重质正构烷烃-CO_2体系的相变边界变化规律及其机理。研究表明,重质正构烷烃-CO_2体系的泡点压力随CO_2含量的增加大幅度升高,随温度升高呈直线增大趋势。CO_2摩尔分数小于等于50%时,重质正构烷烃-CO_2体系的泡点压力随碳数增加略有下降,且CO_2摩尔分数越大降幅越大;CO_2摩尔分数等于75%时,重质正构烷烃-CO_2体系泡点压力随碳数增加略有增加。CO_2含量小于等于50%时,随烷烃碳原子数的增加,体系的泡点压力受温度变化的影响减小;CO_2含量等于75%时,随烷烃碳原子数的增加,重质正构烷烃-CO_2体系泡点压力受温度变化的影响基本不变。从微观尺度分析,重质正构烷烃-CO_2体系相变边界呈上述变化规律的原因在于重质正构烷烃分子链较长,分子间间隙较大,容纳CO_2分子的能力较强,且易发生蜷曲。  相似文献   

8.
本文介绍C_5/C_6烷烃异构化催化剂放大结果及该催化剂在1000t/a中型装置上的运转情况,在反应温度260℃,反应压力2~2.2MPa,进料质量空速为1h~(-1),氢油摩尔比为2.7时,C_5异构化率过62%以上,C_6异构化率达83%以上,C_6选择性(2,2二甲基丁烷占己烷)18%以上,裂解率小于3%,催化剂达到了国外同类技术的先进水平.其工艺放大是成功的.  相似文献   

9.
用氧气氧化乙烯生成坏氧乙烷,是当前工业生产环氧乙烷的主要方法。在银催化剂的存在下,乙烯被氧气氧化的过程中发生如下的反应: 2C_2H_4+O_2—→2C_2H_4O+△H_1 (1) C_2H_4+3O_2—→2CO_2+2H_2O+△H_2 (2)  相似文献   

10.
<正>美国哥伦比亚大学Lenfest可持续能源研究中心的研究人员与Ris(?)国家可持续能源实验室合作,于2010年7月24日宣布,正在研究采用固体氧化物电解电池(SOECs)使CO_2和H_2O进行高温共电解,以便产生合成气,供转化生产液态烃类燃料。提出的闭环燃料循环过程,CO_2可被循环为烃类燃料,该过程基于捕集来自大气中的CO_2,在固体氧化物电解电池中采用CO_2和H_2O的高温共电解,产生合成气(CO/H_2混合物),并从合成气催化生成合成燃料。  相似文献   

11.
延迟焦化原料一般为减压渣油,延迟焦化工艺的操作参数应随渣油性质而变,研究渣油的馏程和热解反应规律是优化渣油焦化工艺的基础。采用色谱高温模拟蒸馏研究了中海油惠州炼化分公司(惠州炼化)减压渣油的馏程和碳分布,采用热重-质谱(TG-MS)联用仪研究了渣油的热裂解行为以及热解气相产物的在线逸出特性。结果表明:惠州炼化减压渣油的初馏点为319℃,终馏点为733℃,碳数分布为C_(18)~C_(120);TG-MS系统在获得热失重信息的同时,可以监测气相挥发分的逸出行为;渣油的热解主要分为3个阶段,最大失重率温度为455℃,固体残余量为14%,逸出产物主要为H_2,CH_4,C_2H_4,C_3H_6,C_3H_4,CO_2,H_2O,H_2S,SO_2和轻质烃。  相似文献   

12.
<正>LS9公司的研究人员于2010年7月30日宣布,发现了生产烃类燃料组分的微生物生物合成路径,烷烃可在蓝细菌(cyanobacteria)中合成;亦即可产生烷烃的新陈代谢路径,这类烷烃是汽油、柴油和喷气燃料主要的烃类组分,由此,烷烃可直接、简单的从糖类转化而来。新获验证的烷烃操纵子已在大肠杆菌(E.coli)中被表征,细菌可产生和分泌C_(13)~C_(17)烷烃和烯烃混合物。这  相似文献   

13.
稠油注汽热采过程中通常伴随着H_2S的产生,针对此现象,以稠油非含硫模型化合物正十六烷及4种金属盐(MgSO_4、Al_2(SO_4)_3、Na_2SO_4及CaSO_4)为研究对象,开展热模拟实验,对稠油热采过程中硫酸盐热化学还原(TSR)生成H_2S机理进行研究。实验表明:反应产物以烃类(C_1~C_5)、无机气体(H_2、CO_2、H_2S)、MgO以及噻吩类、硫醇和硫醚类物质为主;4种金属盐TSR生成H_2S量顺序为:Al_2(SO_4)_3CaSO_4MgSO_4Na_2SO_4;生成CO_2量顺序为:Al_2(SO_4)_3Na_2SO_4MgSO_4CaSO_4。原因在于金属阳离子电荷数越大自催化作用越强,产生H_2S越多;不同硫酸盐体系反应路径不同。推导了正十六烷与MgSO_4的TSR反应过程:包括质子化作用、热解反应、硫代硫酸盐向有机硫化物转化、H_2S自催化作用及硫化物热解和水解等反应,其中自催化作用是生成H_2S的主要途径。最后,通过计算得到正十六烷与MgSO_4的TSR反应活化能为61.498 kJ/mol。  相似文献   

14.
《齐鲁石油化工》2022,(4):295-295
用于直接将原油提质为氢气和化学品的系统和工艺,包括将入口烃流分离成轻馏分和包含柴油沸点温度范围的重馏分;由轻馏分产生包含H_(2)和CO的合成气;使产生的CO反应;从重馏分中产生并分离CO_(2)、聚合级乙烯、聚合级丙烯、C_(4)化合物、裂化产物、轻循环油和重循环油;收集和纯化重馏分产生的CO_(2);加工C_(4)化合物以产生烯烃低聚物和链烷烃残余液;分离裂化产物;低聚轻馏分石脑油流;加氢处理芳烃流;对轻循环油进行加氢裂化以产生单芳烃产物流;气化重循环油。  相似文献   

15.
《精细石油化工》2017,(2):39-43
以苯、辛酰氯、硼氢化钠和环氧乙烷为原料,通过傅-克酰基化反应、还原反应和加成反应合成了1-苯基-1-辛醇聚氧乙烯醚(BO-10),通过红外吸收光谱和核磁共振波谱表征了产物的结构。对其反应条件采用正交试验进行了优化,得到正辛基酰苯的合成的适宜条件为:反应时间90 min、反应温度30℃、n(AlCl_3)∶n(C_7H_(15)COCl)=1.6∶1、n(苯)∶n(C_7H_(15)COCl)=9∶1;1-苯基-1-辛醇的合成的较佳反应条件为:n(NaBH_4)∶n(C_(14)H_(22)O)=0.8∶1、V(C_2H_5OH)∶m(C_(14)H_(22)O)=8∶1、反应温度70℃、反应时间为80mins。在此优化条件下,1-苯基-1-辛醇的总收率能达到86.01%,目的产物的加成数约为10,与壬基酚聚氧乙烯醚(NPEO10)的性能相近。  相似文献   

16.
根据甲醇制芳烃(MTA)的反应特性,构建了C_1(CH_4、H_2、CO、CO_2)、烷烃(烷烃以及环烷烃),烯烃,轻芳烃(C_6-C_9)和重芳烃(C_(9+))五集总的动力学模型,采用模拟退火法的全局优化方法拟合回归得到动力学模型参数,经过模型检验,获得的五集总MTA动力学模型是合适的。采用动力学反应器模型,用Aspen Plus软件模拟了年产7万吨甲醇制芳烃的工艺流程。MTA反应是强放热,工艺采取循环气与新鲜原料气混合进料以控制反应过程的温升,模拟计算了进料温度、循环比和进料醇含量对反应的影响,获得了最优的操作条件。  相似文献   

17.
实验以芴基锂、二氯二甲基硅烷和环戊二烯基钠为原料,在四氢呋喃溶剂中合成了茂锆催化剂[(C_(13)H_8)Si(CH_3)_2(C_5H_5)]ZrCl_2,总收率51%。经核磁共振氢谱和碳谱分析,确定了化合物的结构。经甲基铝氧烷活化,该化合物催化乙烯、丙烯共聚反应显示出较高的催化活性,其催化活性(每1 mol Zr)常压下可以达到10~3g/h,聚合物的相对分子质量约1.0×10~4。  相似文献   

18.
用气体扩散法测定炼厂气的相对密度误差大,操作麻烦,而用色谱仪测得的气体组分体积分数来直接计算相对密度,不但简化了分析手续,而且结果准确可靠.简介如下: 1 计算公式气体平均相对分子质量: M=(30A+44B+28C+2D+16E+30F+28G+44H+42I+58J+56K+72L+34N)/100……(1) 气体密度: ρ_气=(PM)/(RT)=(1×M)/(82.053×273.15)=4.462×10~(-5)M(g/cm~3)=4.462×10~(-2)M(kg/m~3) 对空气的相对密度: d=(ρ_气)/(ρ_空)=(4.462×10~(-2)M)/1.293=3.451×10~(-2)M 式(1)中英文字母表示气体中组分:空气、CO_2、CO、H_2、CH_4、C_2H_6、C_2H_4、C_3H_6、C_3H_6、C_4H_(16)、C_4H_8、C_5H_(12)、H_2S的体积分数,字母前数字表示各组分的相对分子质量.  相似文献   

19.
研究了用 Ni(acac)_2(2,4-戊二酮镍)或 Ni(dPP)_2(1,3-二苯基-1,3-丙二酮镍)/烷基铝均(?)催化体系进行的丙烯齐聚反应。用一系列 Et_2AIY 型的烷基铝(Y=((?)-C_6H_(12))_2N—、C_2H_5O—、n-C_4H_9O—、n-C_(?)H_(11)CO_2—、C_6H_5CO_2—等)作助催化剂时,发现催化剂活性与 Y 的电负性有关,而且只有当 HY 的酸性与β-二酮配体的酸性相适应时,催化剂才有离活性。  相似文献   

20.
以Ni(AcAc)_2~8-Al(C_2H_5)_3-P(OC_6H_5)_3为催化体系,将C_4馏分中的丁二烯进行了环化二聚。研究结果表明:含35%丁二烯的C_4馏分,丁二烯的转化率不<95%。产品收率:1,5-环辛二烯为80%~85%,4-乙烯基环己烯为8%,1,5,9-环十二碳三烯为0%~10%。催化体系的催化效率为5000g丁二烯/g Ni,当C_4馏分中丁二烯的含量提高到60%时,其催化效率为15000g丁二烯/g Ni。 (*Ni(AcAc)_2——乙酰丙酮镍)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号