共查询到19条相似文献,搜索用时 62 毫秒
1.
为解决文本分类中因文本数据篇幅长且语义情感分布不均导致分类准确度偏低的问题,提出一种基于分层式卷积神经网络(convolutional neural network,CNN)的长文本情感分类模型pos-ACNN-CNN.通过在嵌入层加入位置编码来捕获文本中的词序信息,结合基于注意力机制的CNN识别不同词语的情感语义贡献... 相似文献
2.
针对传统的卷积神经网络(Convolutional Neural Network,CNN)和长短时记忆网络(Long Short-Term Memory,LSTM)在提取特征时无法体现每个词语在文本中重要程度的问题,提出一种基于CNN和LSTM的多通道注意力机制文本分类模型。使用CNN和LSTM提取文本局部信息和上下文特征;用多通道注意力机制(Attention)提取CNN和LSTM输出信息的注意力分值;将多通道注意力机制的输出信息进行融合,实现了有效提取文本特征的基础上将注意力集中在重要的词语上。在三个公开数据集上的实验结果表明,提出的模型相较于CNN、LSTM及其改进模型效果更好,可以有效提高文本分类的效果。 相似文献
3.
近年来,卷积神经网络(convolutional neural network, CNN)和循环神经网络(recurrent neural network, RNN)已在文本情感分析领域得到广泛应用,并取得了不错的效果.然而,文本之间存在上下文依赖问题,虽然CNN能提取到句子连续词间的局部信息,但是会忽略词语之间上下文语义信息;双向门控循环单元(bidirectional gated recurrent unit, BiGRU)网络不仅能够解决传统RNN模型存在的梯度消失或梯度爆炸问题,而且还能很好地弥补CNN不能有效提取长文本的上下文语义信息的缺陷,但却无法像CNN那样很好地提取句子局部特征.因此提出一种基于注意力机制的多通道CNN和双向门控循环单元(MC-AttCNN-AttBiGRU)的神经网络模型.该模型不仅能够通过注意力机制关注到句子中对情感极性分类重要的词语,而且结合了CNN提取文本局部特征和BiGRU网络提取长文本上下文语义信息的优势,提高了模型的文本特征提取能力.在谭松波酒店评论数据集和IMDB数据集上的实验结果表明:提出的模型相较于其他几种基线模型可以提取到更丰富的文本特征,可以取得比其他基线模型更好的分类效果. 相似文献
4.
文本情感分析是自然语言处理的经典领域之一.文中提出了一种基于transformer特征抽取器联合多通道卷积神经网络的文本情感分析的模型.该模型使用transformer特征提取器在传统Word2vector,Glove等方式训练的静态词向量的基础上来进行单词的分层、动态表示,针对特定数据集采用Fine-Tuning方式... 相似文献
5.
尝试将word embedding和卷积神经网络(CNN)相结合来解决情感分类问题。首先,利用Skip-Gram模型训练出数据集中每个词的word embedding,然后将每条样本中出现的word embedding组合为二维特征矩阵作为卷积神经网络的输入;此外,每次迭代训练过程中,输入特征也作为参数进行更新。其次,设计了一种具有3种不同大小卷积核的神经网络结构,从而完成多种局部抽象特征的自动提取过程。与传统机器学习方法相比,所提出的基于word embedding和CNN的情感分类模型成功将分类正确率提升了5.04%。 相似文献
6.
近年来在方面级情感分析任务上,基于卷积神经网络和循环神经网络的模型取得了不错的效果,但仍存在着文本长距离依赖问题.有序神经元长短时记忆(ON-LSTM)可建模句子的层级结构,解决文本长距离依赖问题,但会忽略文本局部特征.区域卷积神经网络(RCNN)能提取文本不同区域的局部特征,却无法有效提取文本的上下文语义,而且现有模型均未考虑到情感词与句子上下文的联系.针对这些问题,本文提出一种基于注意力机制与情感的多通道RCNN和ON-LSTM的神经网络模型(MCRO-A-S).首先,向上下文词向量中融入情感特征向量,弥补仅使用上下文词向量作为模型输入的不足.其次,结合RCNN模型提取文本局部特征与ON-LSTM模型提取文本上下文语义信息的优势,可有效提高模型特征提取能力.最后,利用注意力机制融合语义信息,给予情感词更多的关注.在SemEval 2014两个数据集和Twitter数据集上验证模型的有效性,取得了比其他模型更好的分类效果. 相似文献
7.
8.
情感分类对推荐系统、自动问答、阅读理解等下游应用具有重要应用价值,是自然语言处理领域的重要研究方向。情感分类任务直接依赖于上下文,包括全局和局部信息,而现有的神经网络模型无法同时捕获上下文局部信息和全局信息。文中针对单标记和多标记情感分类任务,提出一种循环卷积注意力模型(LSTM-CNN-ATT,LCA)。该模型利用注意力机制融合卷积神经网络(Convolutional Neural Network,CNN)的局部信息提取能力和循环神经网络(Recurrent Neural Network,RNN)的全局信息提取能力,包括词嵌入层、上下文表示层、卷积层和注意力层。对于多标记情感分类任务,在注意力层上附加主题信息,进一步指导多标记情感倾向的精确提取。在两个单标记数据集上的F1指标达到82.1%,与前沿单标记模型相当;在两个多标记数据集上,小数据集实验结果接近基准模型,大数据集上的F1指标达到78.38%,超过前沿模型,表明LCA模型具有较高的稳定性和较强的通用性。 相似文献
9.
由于自然语言的复杂语义、词的多情感极性以及文本的长期依赖关系,现有的文本情感分类方法面临严峻挑战。针对这些问题,提出了一种基于多层次注意力的语义增强情感分类模型。首先,使用语境化的动态词嵌入技术挖掘词汇的多重语义信息,并且对上下文语义进行建模;其次,通过内部注意力层中的多层并行的多头自注意力捕获文本内部的长期依赖关系,从而获取全面的文本特征信息;再次,在外部注意力层中,将评论元数据中的总结信息通过多层次的注意力机制融入评论特征中,从而增强评论特征的情感信息和语义表达能力;最后,采用全局平均池化层和Softmax函数实现情感分类。在4个亚马逊评论数据集上的实验结果表明,与基线模型中表现最好的TE-GRU(Transformer Encoder with Gated Recurrent Unit)相比,所提模型在App、Kindle、Electronic和CD数据集上的情感分类准确率至少提升了0.36、0.34、0.58和0.66个百分点,验证了该模型能够进一步提高情感分类性能。 相似文献
10.
情感分类任务需要捕获文本中的情感特征,利用重要的局部特征构建文本的特征表示。卷积神经网络(convolutional neural networks,CNN)已经被证明拥有出色的特征学习能力,但是该模型无法判别输入文本中特征词与情感的相关性,卷积层缺乏对单一词特征的提取。基于目前运用非常成功的注意力模型,该文提出一种基于词注意力的卷积神经网络模型(word attention-based convolutional neural networks,WACNN)。相比于卷积神经网络,该模型以篇章的文本信息作为输入,首先在词嵌入层之后增加注意力机制层,获取重要的局部特征词,使模型有选择地进行特征提取;然后在卷积层中增加大小为1的卷积核,提取单一词的特征;最后该方法对输入文本进行适当的文本填充,保证每个词都存在上下文信息,使模型有效提取到每个词的n-grams局部特征,避免卷积处理过程中局部信息的丢失。该模型在MR5K和CR数据集上进行验证,较普通卷积神经网络和传统机器学习方法,在准确率上分别取得0.5%和2%的提升。 相似文献
11.
针对传统长短时记忆网络(Long Short-Term Memory,LSTM)和卷积神经网络(Convolution Neural Network,CNN)在提取特征时无法体现每个词语在文本中重要程度的问题,提出一种基于LSTM-Attention与CNN混合模型的文本分类方法.使用CNN提取文本局部信息,进而整合出... 相似文献
12.
13.
文本校对是自然语言处理领域的重要分支。深度学习技术因强大的特征提取与学习能力被广泛应用于中文文本校对任务。针对现有中文文本错误检测模型忽略句子连续词间的局部信息、对于长文本的上下文语义信息提取不充分等问题,提出一种基于多通道卷积神经网络(CNN)与双向门控循环单元(BiGRU)的字词级文本错误检测模型。利用Word2vec向量化待检错文本,采用CNN挖掘待检错文本的局部特征,使用BiGRU学习待检错文本的上下文语义信息及长时依赖关系,并通过Softmax处理后输出文本分类结果以判断文本中是否含有字词错误,同时采取L2正则化和dropout策略防止模型过拟合。在SIGHAN2014和SIGHAN2015中文拼写检查任务数据集上的实验结果表明,与基于长短时记忆网络的文本错误检测模型相比,该模型的检错F1值提升了3.01个百分点,具有更优的字词级文本错误检测效果。 相似文献
14.
医学图像融合技术因其包含多模态的图像信息,在临床应用中起着越来越重要的作用。医学图像融合效果符合人类视觉感知,减少先验知识对融合效果的影响和增强细节表现力一直是努力的方向。提出基于拉普拉斯金字塔和卷积神经网络的医学图像融合方法,针对图像伪影的问题采用区域拉普拉斯金字塔,为保存更多的细节信息并使参数自适应,对卷积神经网络进行改进。将源图像分别输入区域拉普拉斯金字塔进行分解,采用改进的卷积神经网络生成最优权重图指导融合过程,通过逆过程生成融合图像。实验结果表明,提出的方法在主观视觉和客观评价指标上都取得了良好的融合效果。 相似文献
15.
图像是一种用来传达情感的重要工具,人类的情感会因不同的视觉刺激而异。采用了一种基于小数据集的数据扩充方式,并将图像的手工提取的低级特征(颜色特征、纹理特征)和网络自动提取到的高级特征(图像对象类别特征和图像深层情感特征)融合的方法,识别图像的复合情感。最终输出包含图像和对象在内的高级语义描述性短语。在公共数据集IAPS和GAPED上进行了实验,并与传统手工提取方法和VGG16、Fine-tune Alexnet两种已有模型进行了比较,该方法在测试性能上优于其他的识别方法,情感识别准确率能达到66.54%。 相似文献
16.
针对股票数据共线性和非线性的特点,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元(Gated Recurrent Unit,GRU)神经网络的混合预测模型,并对沪深300指数、上证综指和深证成指进行了预测.该模型首先采用CNN提取特征向量,对原始数据进行降维... 相似文献
17.
随着大数据和人工智能的发展, 将人工处理专利的方式转换为自动化处理成为可能. 本文结合卷积神经网络(CNN)提取局部特征和双向长短记忆神经网络(BiLSTM)序列化提取全局特征的优势, 在BiLSTM隐藏层引入注意力机制(Attention机制), 提出了针对中文专利文本数据的BiLSTM_ATT_CNN组合模型. 通过设计多组对比实验, 验证了BiLSTM_ATT_CNN组合模型提升了中文专利文本分类的准确率. 相似文献
18.
心脏疾病严重威胁人类身体健康,心电图(Electrocardiogram,ECG)心拍分类对心脏疾病的临床诊断和自动诊断具有重要意义。现有基于深度学习生成的ECG心拍特征虽然优于基于传统方法生成的心拍特征,但是因ECG中各类间存在着严重的数据不平衡问题,致使现有基于深度学习方法生成的心拍特征的性能仍不甚理想。针对这一问题,以卷积神经网络(Convolutional Neural Network,CNN)为基础,在各类心拍等量数据基础上构建能有效表达各类心拍共性信息的共性CNN模型,以共性CNN模型和最小化类内距离最大化类间距离模型为基础,分别在各类心拍数据上构建能有效反映相应心拍类别倾向性信息的类别CNN模型,综合各心拍类别CNN模型的输出进行识别与分类。在MIT-BIH数据库上的实验结果显示,该方法识别分类心拍的各项指标均达到100%,解决了MIT-BIH数据库中ECG四类心拍自动识别分类的问题。 相似文献
19.
为进一步探究不同类型特征互补性对脑电情绪分类的影响,提出一种基于多特征融合的脑电情绪分类新方法。对预处理后的脑电信号进行DE、MST和SampEn特征提取,采用双样本T检验去除冗余筛选出最优特征并融合,采用SVM分类模型来识别不同的情绪状态。在SEED-Ⅳ数据集上的实验结果表明,单一特征中DE的平均分类准确率最高(77.86%),而融合非线性SampEn特征与功能连接MST属性后平均分类准确率得到进一步提升(84.58%),不同时间段采集的数据上重测实验则证明了该方法的有效性与稳定性。 相似文献