共查询到16条相似文献,搜索用时 62 毫秒
1.
2.
《计算机科学与探索》2016,(7):1035-1043
为提高目标跟踪算法在复杂条件下的鲁棒性和准确性,研究了一种基于贝叶斯分类的结构稀疏表示目标跟踪算法。首先通过首帧图像获得含有目标与背景模板的稀疏字典和正负样本;然后采用结构稀疏表示的思想对样本进行线性重构,获得其稀疏系数;进而设计一款贝叶斯分类器,分类器通过正负样本的稀疏系数进行训练,并对每个候选目标进行分类,获得其相似度信息;最后采用稀疏表示与增量学习结合的方法对稀疏字典进行更新。将该算法与其他4种先进算法在6组测试视频中进行比较,实验证明了该算法具有更好的性能。 相似文献
3.
关于稀疏编码的研究在最近几年成为许多研究领域的焦点,已有学者将其引入视频目标跟踪问题中。在贝叶斯推理框架下,基于l1-跟踪子能较好地处理目标物在视频场景中的各种复杂变化,达到较为鲁棒的跟踪效果,但算法复杂度高,很难进行实时跟踪。对原始l1-跟踪子在稀疏编码的过完备基构造,对目标物出现各种复杂变化的处理方式以及目标物模板的更新这三个方面进行了改进,设计了无需更新目标模板的高速跟踪方法;并通过大量比较实验,验证了该方法的跟踪精度与原始l1-跟踪子相似,但跟踪效率远高于l1-跟踪子,达到了实时跟踪的效果。 相似文献
4.
针对相关滤波跟踪算法在目标形变、背景干扰等复杂场景下,易受干扰特征影响导致跟踪失败的问题,提出了基于稀疏表示的相关滤波目标跟踪算法。该算法将稀疏表示与相关滤波相结合,在目标函数中引入L1范数惩罚项,使训练出的相关滤波器只含有目标的关键特征,同时根据相关滤波系数的空间位置为其分配不同的惩罚参数,并采用交替方向乘子法(alternating direction method of multipliers,ADMM)求解相关滤波器。实验结果表明:该算法在三个常用数据集上,与五种相关滤波跟踪算法相比,具有最高的精确度和成功率,且对复杂场景中的干扰特征具有良好的鲁棒性,同时能够满足目标跟踪实时性的要求。 相似文献
5.
《计算机辅助设计与图形学学报》2014,(8)
为提高视频目标跟踪算法的鲁棒性,提出一种基于在线更新稀疏模板的自适应参数特征判别跟踪算法.该算法采用离线方式训练出基于方向梯度直方图特征的字典,用于目标表示和线性分类器训练,从而构建出非固定参数的观测模型;观测模型中动态调整的权重系数由采用正负模板构建形成的稀疏字典进行实时动态更新;将观测模型与粒子滤波相结合对当前帧的各候选采样进行观测,得出跟踪结果.实验结果表明,文中算法具有相对较好的鲁棒性. 相似文献
6.
目的 当前大多数基于Mean-shift的跟踪算法都忽视了目标中密集的特征信息,本文有效利用密集特征信息,来提高跟踪的准确性.方法 在目标模型中,常存在一些颜色特征相对聚集,形成一定大小的特征密集区,这些区域的面积或大或小,对人眼视觉跟踪异常重要.这些区域形成的空间结构信息,可以被利用到目标跟踪.提出一种高效的目标模型,通过计算密集特征区域面积,以及密集区质心到目标中心的距离,构建加权系数,通过该系数,来增加目标中分布相对集中的特征的权值,同时削弱离散特征的权值.同时使用零阶矩和目标模型与候选模型之间的相似度系数,估算目标的面积;再使用预测目标面积补偿法,对目标中因使用背景加权法而权重被削弱的特征区域,进行面积补偿;最后使用估算的目标区域面积以及二阶中心距,估算目标尺度和方向的改变.在跟踪过程中,背景如发生较大变化,则对目标模型进行更新.结果 本文算法具有很好的尺度适应性,跟踪平均准确率在94.6%以上,得到较当前一些先进方法更好的准确度和效率.结论 提出的算法能增加目标模型中不同特征权值间的差异,使得构建的目标模型具有较强区分目标和背景的能力,提高了定位目标的准确性;面积补偿法解决了目标因特征权重被削弱,而导致估算的目标面积小于实际面积的问题. 相似文献
7.
针对稀疏表示用于目标跟踪时存在重构误差表示不够精确、目标模板更新错误等问题,提出一种改进的稀疏编码模型。该模型无需重构误差满足特定的先验概率分布,且加入对编码系数的自适应约束,可以取得更优的编码向量,使得跟踪结果更为准确。在此基础上,将这种改进的编码模型与粒子滤波目标跟踪算法相结合,研究并实现一种新的基于鲁棒稀疏编码模型的目标跟踪方法。该方法对每个粒子的采样区域进行编码,用所得的稀疏编码向量作为当前粒子的观测量,并采用目标模板分级更新策略,使得目标模板更加准确。实验结果表明,方法可以较好地解决目标部分遮挡和光照变化等干扰下的目标跟踪问题。 相似文献
8.
为了提高视频序列中目标跟踪的准确性,提出了结合低维Haar-like特征和在线加权多示例学习(OWMIL)的跟踪算法。将训练集中的图像进行剪裁,构建正负样本集。通过稀疏编码提取低维度的Haar-like特征来表示目标。通过这些正负样本的局部稀疏特征在线学习生成弱分类器集,并通过示例加权方法来促进学习过程,最终生成一个强分类器,用于测试视频中的目标跟踪。实验结果表明,该算法在旋转、光照和尺度变化等影响下取得了优异的效果。相比其他几种改进型多示例学习算法,提出的算法获得了更好的跟踪效果。 相似文献
9.
《计算机工程》2017,(6):236-240
跟踪-学习-检测(TLD)目标跟踪算法能够实现长时间的在线目标跟踪,但当目标平面旋转发生形变以及目标被严重遮挡时,TLD算法在跟踪过程中会产生跟踪漂移。针对上述问题,在TLD算法的跟踪模块上使用稀疏原型进行跟踪,提出一种稀疏原型(SP)-TLD目标跟踪算法。当出现由于平面旋转引起的目标形变时,通过仿射变换变化坐标位置,能够准确跟踪目标避免产生跟踪漂移。在目标被严重遮挡时,根据目标的主成分分析基向量和琐碎模板判断目标未被遮挡及被遮挡部分,从而识别出被遮挡的目标。实验结果表明,与TLD算法相比,SP-TLD算法具有更高跟踪准确率和更强鲁棒性。 相似文献
10.
11.
针对相关滤波跟踪中目标在剧烈形变时会发生滤波模板漂移,以及在复杂场景中目标跟踪鲁棒性较差的问题,提出一种融合稀疏重构图像显著性的相关滤波跟踪算法。在跟踪过程中,通过超像素分割提取背景模板来稀疏重构目标颜色相关,构建目标颜色模型得到跟踪检测分数,将该检测分数与相关滤波检测分数进行融合,根据融合响应,利用峰值旁瓣比调整模板更新速度来解决遮挡下的更新策略问题,同时利用中心先验图对存在误差的稀疏重构图进行修正,使得该目标跟踪框架能适应形变、光照等复杂变化。实验表明,该算法在准确性和鲁棒性方面要优于其他算法。 相似文献
12.
针对目标跟踪的遮挡与局部形变,提出局部余弦相似度训练权重的逆稀疏视觉目标跟踪策略。借鉴参数空间的粒子滤波的核心思想,以逆稀疏表示为理论框架,用候选目标重构模板获得候选目标的稀疏表示系数,依据表示系数分布特征筛选出最佳候选目标。为克服遮挡影响,引入新的目标函数构建模板的局部块判别能力:计算正负样本与模板之间的局部余弦相似度差值,利用二次优化,更新具有判别能力的权重。依据权重信息综合进行有选择的模板更新,避免模板更新的无效性。多组实验结果表明,该算法在部分遮挡等复杂环境下,仍然可以准确地跟踪目标,相比已有算法具有自己的优势。 相似文献
13.
14.
传统的基于稀疏表示的目标跟踪方法主要利用目标的灰度特征构建稀疏表示模型。由于灰度特征对光照变化敏感,这会影响目标跟踪在复杂场景下的鲁棒性。基于多源数据融合的目标跟踪可以明显提升目标跟踪鲁棒性,但如何有效融合不同维度,不同类型的多源目标特征成为基于多源数据融合的目标跟踪所要解决的关键问题。提出了一个基于目标状态以及灰度特征的稀疏表示目标跟踪方法。所提出的方法可通过基于核函数表示的稀疏表示模型,在探究目标状态以及灰度特征相关性的基础上,将两种不同维度的特征进行有效融合,提升目标跟踪在复杂场景下的鲁棒性。 相似文献
15.
李亚文 《自动化技术与应用》2021,40(3):108-112
针对传统MeanShift目标跟踪算法中运动目标有速度较快或者尺度变换时,而不能准确进行跟踪的问题,引入了DSST运动目标跟踪算法.该算法加入了多尺度估计,并且在样本提取时采用多维特征,可以较好的估计下一帧中运动目标的位置.本文分析了DSST算法的原理,并进行了实验仿真.实验结果表明,DSST的运动目标跟踪算法能较好的... 相似文献
16.
针对基于概率假设密度(probability hypothesis density,PHD)的非线性机动多目标跟踪精度低、滤波发散、目标数目估计不准确等问题,提出一种基于交互式多模型的稀疏高斯厄米特PHD算法.该算法在PHD滤波器下,采用稀疏高斯厄米特方法对目标进行状态预测和量测更新,构造一种稀疏高斯厄米特PHD滤波器;然后将交互式多模型算法融入稀疏高斯厄米特PHD滤波框架中,解决了目标机动过程中运动模式不确定的问题.仿真结果表明该算法能对机动多目标进行有效的跟踪,相比交互式多模型不敏卡尔曼PHD等滤波方法具有更高的状态估计精度,且目标数目估计更准确. 相似文献