共查询到19条相似文献,搜索用时 107 毫秒
1.
2.
基于改进RBF神经网络的入侵检测研究 总被引:1,自引:0,他引:1
近年来,神经网络技术在入侵检测中得到了广泛应用,其中最具代表的是BP神经网络,但其本身所具有的局部极小性质限制了检测性能的提高。RBF神经网络在一定程度上克服了BP神经网络存在的问题,但如何确定一个合适的RBF网络隐层神经元中心个数又是保证其应用效果的关键之一。因此,将基于熵的模糊聚类和RBF神经网络相结合,提出了基于EFC的改进RBF神经网络算法,并将该方法应用于入侵检测研究。实验表明,该算法可以获得满意的性能。 相似文献
3.
论文提出了一种多策略改进RBF神经网络入侵检测方法。该方法采用减聚类算法确定隐含层节点数,具有自适应确定隐层节点的能力,避免了调整隐层节点的人为干扰。采用粒子群算法和梯度下降法相结合的方法分别对基函数的中心值、宽度以及隐含层与输出层之间的权值进行全局优化以及局部优化,避免了参数选取的局部性。实验证明,该方法能够有效提高入侵检测系统的检测率,并降低误报率。 相似文献
4.
目前,较为成熟的入侵检测系统普遍存在检测率偏低、对新的入侵不够敏感等问题,影响了系统的整体性能。在深入研究的基础上,本文提出了一种基于神经网络集成的入侵检测方法。该方法采用神经网络集成分类技术,在去除冗余数据的基础上对成员网络进行训练,并通过动态的方法确定成员网络的个数,最终通过神经网络对成员网络结果进行融合,以提高系统的整体性能。理论和实验表明,该方法能在保证成员网络差异性的同时提高入侵的检测率,具有较好的应用前景。 相似文献
5.
6.
谢芬 《数字社区&智能家居》2012,(4X):2687-2688
网络入侵检测是近几年信息安全领域的研究热点。为了提高网络入侵检测系统中异常数据检测的精度、降低漏报率和误报率,维护网络系统安全,该文提出了一种基于Adaboost算法集成BP神经网络的网络入侵检测方法。该方法首先构造个体BP神经网络模型,个体BP神经网络为弱分类器即可,然后通过大量训练样本对模型进行训练,采用Adaboost算法对其弱分类器进行集成构造强分类器模型。最后在KDD 99数据集上,通过Matlab软件进行仿真实验,实验结果表明,该方法能有效的提高异常数据检测的精度。 相似文献
7.
介绍集成神经网络的基本概念及其算法理论,提出基于遗传算法的集成神经网络入侵检测方法,并以KDDCUP99作为数据源给出应用该方法进行入侵检测的性能.通过与单个神经网络的比较,说明基于遗传算法的集成神经网络检测方法能克服单个分类算法的缺陷,提高入侵检测系统的检测率. 相似文献
8.
入侵检测系统在保障信息安全方面起着重要的作用,对入侵检测系统智能性的研究是当前信息安全领域的研究热点.针对入侵检测系统存在的离漏报率和误报率等缺点,在对RBF(Radial Basic Functions径向基函数)神经网络优化算法进行对比研究的基础上,利用遗传算法优化传统RBF算法的网络初始权重,成功地将GA-RBF... 相似文献
9.
BP神经网络作为较成熟的技术已被应用于入侵检测技术中,但遇到的诸如执行速度慢、易陷入局部最小值等问题限制了其检测性能的提高,而RBF(Radial Basic Functions径向基函数)神经网络在逼近能力、学习速度及分类能力上都优于BP神经网络。本文设计了一个基于RBF的入侵检测模型,确定了RBF神经网络的结构和学习算法后,用KDD99数据集中的训练数据对系统进行训练,最后,用测试数据对系统进行测试。仿真试验表明,该系统最终具有较高的检测率和很低的误报率。 相似文献
10.
11.
基于优化自组织聚类神经网络的入侵检测方法研究 总被引:1,自引:0,他引:1
提出一种将自组织聚类神经网络运用于入侵检测的方法。在这种方法中采用自适应谐振学习算法进行训练;当网络的平均误差不再有意义地减少时,用遗传算法对网络继续进行训练得到最佳权值。用神经网络和遗传算法使网络结构和网络连接权值同时进化,收敛性好,自适应性强,适合于实时处理。仿真结果表明该网络取得良好检测效果。 相似文献
12.
提出在入侵检测系统模型设计中引入神经网络技术,建立了一个基于神经网络的入侵检测系统模型。针对传统BP算法存在的一些固有缺点,提出增加动量项与自适应调节学习速率相结合的改进算法,一定程度上克服了BP神经网络存在的问题。实验结果表明,基于改进的BP神经网络的入侵检测方法具有良好的检测性能。 相似文献
13.
提出了一种改进型的动态神经网络,并成功地将其应用于网络入侵检测系统中。对于给定的全连接的动态神经网络,在通过学习以后可以成为部分连接的神经网络系统,从而降低了计算的成本。针对目前常见的4种不同类型的网络攻击行为(即DoS,Probe,R2L,和U2R),利用给定的改进型的动态神经网络分别构建相对应的检测系统。然后使用改进的遗传算法对给定的动态神经网络的权值和开关参数进行调节,以适应不同类型的入侵检测。最后利用KDD’99网络入侵检测数据对所提出的网络入侵检测模型进行训练和测试,初步试验结果表明,所提出的入侵检测系统具有较高的检测率。 相似文献
14.
分析了入侵检测技术在计算机网络安全技术中的作用和地位,同时将BP神经网络算法应用于入侵检测当中,建立了基于BP神经网络的智能入侵检测系统.该系统能够通过数据包捕获模块实时抓取网络中传输的数据包,之后通过协议分析模块进行数据包所使用的数据协议的识别,从而能够在BP神经网络模块分别针对采用TCP、UDP、ICMP这三种网络数据传输协议的数据包进行处理.从本文中列出的该系统在Matlab07上的仿真结果可以看出:基于BP神经网络的智能入侵检测系统能够有效地提升入侵检测识别率. 相似文献
15.
本文对基于T-S模型FNN的网络入侵检测方法进行系统地研究与分析.解决了T-S模型网络的前件网络模糊参数和后件网络连接权的学习问题.采用1998年林肯实验室数据集,运用统计分析的方法对数据进行特征选取,并进行归一化处理.最后进行网络入侵检测方法的建模,在Matlab仿真平台上进行仿真实验,结果表明基于T-S模型FNN的网络入侵检测方法具有很好的应用价值. 相似文献
16.
基于神经网络的入侵检测是常见的智能入侵检测方法,能够对网络内部、外部攻击进行防御。将神经网络和遗传算法相结合,采用改进适应度遗传算法优化神经网络。实验结果表明,该方法能够有效的提高系统的检测率,降低误报率。 相似文献
17.
针对传统的基于遗传神经网络的入侵检测模型未考虑误分类代价的不足,将误分类代价敏感的特征集成到基于遗传神经网络的网络入侵检测模型中,从而克服了传统模型中错误分类时可能导致代价过大的缺点。通过实验结果表明,增加了误分类代价敏感特征后的遗传神经网络能较好地控制网络入侵检测系统误报、漏报攻击时所产生的代价。 相似文献
18.