共查询到20条相似文献,搜索用时 15 毫秒
1.
吴晓勤 《中国图象图形学报》2006,11(2):269-274
给出了含有参数λ的(n+1)次多项式基函数,其是n次Bernste in基函数的扩展;分析了这组基的性质,基于该组基定义了带有形状参数的(n+1)次多项式曲线。曲线不仅具有n次Bézier曲线的特性:如端点插值、端边相切、凸包性、变差缩减性、保凸性等,而且具有形状的可调性:在控制顶点不变的情况下,随着参数不同,可产生不同逼近控制多边形的曲线。当λ=0时,曲线可退化为n次Bézier曲线。运用张量积方法,可生成形状可调的曲面,曲面具有曲线类似的性质。应用实例表明,本文定义的曲线应用于曲线/曲面的设计十分有效。 相似文献
2.
利用权的思想并结合奇异混合技术,对传统的拟Bézier曲线进行扩展,构造了一种带形状参数的奇异混合拟Bézier曲线.首先将奇异混合函数和三角多项式空间的拟三次Bézier基函数相结合得到奇异混合拟Bézier曲线的定义,进而根据奇异混合拟Bézier曲线的定义反推出奇异混合拟Bézier基函数;接着讨论了奇异混合拟B... 相似文献
3.
带多形状参数的广义Bézier曲线曲面 总被引:3,自引:0,他引:3
为了在几何造型中更加灵活地调控曲线曲面的形状,提出一种带多形状参数的造型方法.首先构造一种带多形状参数的多项式调配函数,其中Bernstein基函数是它的特例;然后利用给出的调配函数定义一类形状可调的广义Bézier曲线曲面,并研究了它们的性质.对给定的控制多边形,可以通过改变形状参数的值整体或局部地调控曲线的形状.最后通过数值实例说明了文中方法的实用性. 相似文献
4.
带多个形状参数的Bézier曲线与曲面的扩展 总被引:6,自引:0,他引:6
通过引入多个形状参数,生成Bézier曲线与三角域Bézier曲面的扩展,它们包含普通的Bézier曲线曲面为其特例.这类多项式曲线与曲面的调配函数具有显式表示,易于求导和求积.改变形状参数的值能整体或局部调控曲线与曲面的形状. 相似文献
5.
利用含有三角函数的T-Bézier曲线,结合加权的思想对Bézier曲线进行了扩展,给出了扩展曲线的基函数表达式,研究了曲线的性质、拼接及应用,通过调节形状参数的值可以精确表示或者逼近圆、椭圆等二次曲线,给出了精确表示和逼近圆的实例,该曲线在结合圆锥曲线的自由曲线设计中具有较高的应用价值。 相似文献
6.
在几何造型的许多应用中,良好的曲线形状应该消除不必要的奇点和拐点,因此 往往需要预知与分析参数曲线的各种形状特征,以避免出现奇异形状的设计风险。为了快速确 定参数曲线的形状特征,利用锥面的齐次性简化了参数曲线的形状条件,得出了一类带 2 个形 状参数的二次三角 Bézier 曲线的尖点条件锥和 2 张重结点边界条件锥;3 张特征锥面及其切平 面将特征空间划分为不同的特征区域。曲线的形状特征完全由特征点在特征空间的分布区域决 定。用垂直于坐标轴的平面切割特征空间,可得到基于包络与拓扑映射方法的所有形状条件分 布图。进而讨论了形状参数变化对各特征区域的影响,相关结果可使设计者明确如何配置控制 顶点或者调节形状参数,使得生成曲线为全局凸或局部凸曲线,或具有所需要的奇点与拐点, 或将当前曲线形状调节为另一种所需的形状。 相似文献
7.
8.
文章主要将Bernstein基函数中的变量u用函数f(u)代替,将Bernstein基函数进行了推广,生成了新的Bézier曲线,称为拟Bézier曲线。讨论了基函数及其生成的曲线的构造和性质。这种拟Bézier曲线不仅有Bézier曲线的优良性质,而且还产生了一些新的特性,如通过调节因子λ的值可以改变拟Bézier曲线的次数[1],同时拟Bézier曲线也可以通过类似的De Casteljau算法来实现拟De Casteljau算法的几何作图法。但不同的是,对相同参数u,Bézier曲线与拟Bézier曲线所对应的点Vi的位置不同。最后讨论了曲线间的拼接问题,其在应用中有一定的研究价值。 相似文献
9.
10.
11.
广义Bézier曲线 总被引:8,自引:0,他引:8
为了有效地改进Bézier曲线的形状,给出了带局部形状参数的广义Bézier曲线,该曲线的表示式以一种函数的高阶逼近式为依据.通过对目标导矢和目标二阶导矢的系数的调整,生成满意的多项式曲线.所给曲线以Bézier曲线为特殊情形,能对较高次的B啨zier曲线进行有效地修改,也能方便地进行曲线段的拼接. 相似文献
12.
13.
邹静 《计算机应用与软件》2012,(12):206-210
Bézier曲线拓展的一个主要研究内容是通过引入形状参数在控制顶点不变的情况下对Bézier曲线进行局部或整体的调整。在回顾主要形式的拓展曲线的基础上,重点对多项式型、三角多项式型、代数双曲型三种曲线的优缺点进行了对比分析,以期为相关研究工作提供参考。 相似文献
14.
提出一组带两个形状参数λ,μ的四次多项式基函数,它是带一个形状参数的三次Bernstein基函数的扩展.基于该组基定义了一类带两个形状参数λ,μ的三次Bézier曲线,它不仅具有带一个形状参数的三次Bézier曲线的绝大多数性质,而且利用λ,μ的不同取值能够局部或整体调控曲线的形状,并且可以从两侧逼近控制多边形.讨论了两段曲线C2拼接条件.最后,还给出了一些可调控曲面的实例. 相似文献
15.
本文给出了带形状参数的类四次三角多项式Bézier曲线。由五个控制顶点生成的曲线不仅具有类似于四次Bézier曲线的诸多性质,而且其形状可由一个参数进行调节,使得该曲线具有更强的表现能力。参数有明确的几何意义:参数越大,曲线越逼近控制多边形,具有比四次Bézier曲线更好的逼近性。曲线无需有理形式即可精确表示圆、椭圆、抛物线等二次曲线弧。为便于自由曲线的设计,还讨论了两段曲线的拼接性,并给出了曲线G2和C3连续的拼接条件。应用实例表明,该曲线在计算机辅助几何设计中具有较高的应用价值。 相似文献
16.
给出了两类调整三次有理Bézier曲线形状的方法。一类方法是使曲线通过给定的插值点,从而实现曲线的形状调整。另一类方法是将曲线上的点作为控制多边形两边连线段上的分点,通过调整分线段的比例,实现对曲线的形状调整。针对不同情况,分别给出了权因子的计算公式。计算方法简单,使用方便,并使三次有理Bézier曲线的形状调整更加具体和明确。同时,由计算结果得到了任意三次有理Bézier曲线不相交的充分必要条件。 相似文献
17.
18.
四次带参Bézier曲线的形状分析 总被引:2,自引:0,他引:2
为了明确形状参数对四次带参Bézier曲线形状的影响,利用基于包络理论与拓扑映射的方法对其进行了形状分析,得出了曲线上含有奇点、拐点和曲线为局部凸或全局凸的充分必要条件,这些条件完全由控制多边形边向量的相对位置所表示;并进一步讨论了形状参数对形状分布图的影响及其对曲线形状的调节能力. 相似文献
19.
基于双曲函数的Bézier型曲线曲面 总被引:4,自引:5,他引:4
通过引入形状参数,在双曲函数空间中构造了一类广义Bézier曲线,称其为HC-Bézier曲线。该曲线具有类似Bézier曲线的优良性质。当控制顶点固定时,通过调整形状参数可以调整曲线形状,从而使得曲线的调整更加灵活。HC-Bézier曲线既可以精确表示直线段,又可以精确表示双曲线等二次曲线段。 相似文献
20.
给出了带两个形状参数λ1,λ2的类四次三角多项式Bézier曲线.该曲线不仅具有与四次Bézier曲线类似的性质,而且无需有理形式即可精确表示圆、椭圆、抛物线等二次曲线弧以及高精度近似表示圆柱螺线等超越曲线.利用两个参数的不同取值能够局部或整体调控曲线的形状,并且可以从两侧逼近控制多边形.讨论了两段曲线G2和C4连续的... 相似文献