首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation of a room temperature active magnetic refrigerator was carried out in this work. An experimental rig was built, in which two reciprocating regenerative beds packed with 1167.4 g of gadolinium were used, helium gas was used as a heat transfer fluid, and an average 1.5 T magnetic field was supplied by permanent magnets. With this apparatus, the influence of the gas pressure, the operating frequency and the temperature range were studied systematically. The lowest no heat load temperature of −2.79 °C at the cold end heat exchanger and a maximum no heat load temperature span of 42.28 °C were obtained. A maximum cooling power of 51.3 W was achieved over a temperature span of 18.16 °C. The results in this study provide useful data for future design and development of room temperature magnetic refrigerators.  相似文献   

2.
A theoretical and experimental study has been carried out for a residential brine-to-water CO2 heat pump system for combined space heating and hot water heating. A 6.5 kW prototype heat pump unit was constructed and extensively tested in order to document the performance and to study component and system behaviour over a wide range of operating conditions. The CO2 heat pump was equipped with a unique counter-flow tripartite gas cooler for preheating of domestic hot water (DHW), low-temperature space heating and reheating of DHW.

The CO2 heat pump was tested in three different modes: space heating only, DHW heating only and simultaneous space heating and DHW heating. The heat pump unit gave off heat to a floor heating system at supply/return temperatures of 33/28, 35/30 or 40/35 °C, and the set-point temperature for the DHW was 60, 70 or 80 °C. Most tests were carried out at an evaporation temperature of −5 °C, and the average city water temperature was 6.5 °C. The experimental results proved that a brine-to-water CO2 heat pump system may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pump systems as long as: (1) the heating demand for hot water production constitutes at least 25% of the total annual heating demand of the residence, (2) the return temperature in the space heating system is about 30 °C or lower, (3) the city water temperature is about 10 °C or lower and (4) the exergy losses in the DHW tank are small.  相似文献   


3.
A linear dynamic model of the thermoelectric cooler including the heat sink and the cooling-load heat exchanger was derived using small-signal linearization method. It shows that the dynamic model of a thermoelectric cooler has two poles and one zero. The linear dynamic model is shown to vary with operating conditions. A linear feedback system is designed for the cold-end temperature control of a thermoelectric cooler using the average linear dynamic model of the thermoelectric cooler and a PDF controller structure. The step response tests show that the controller has a very satisfactory performance. Some tests under variable cooling load and ambient temperature are also performed to examine the disturbance-rejection property of the controller. Experimental results show that the cold-end temperature can be maintained at the fixed value within ±0.1°C irrespective of the variations of the cooling load and the ambient conditions.  相似文献   

4.
A capillary tube based CO2 heat pump is unique because of the transcritical nature of the system. The transcritical cycle has two independent parameters, pressure and temperature, unlike the subcritical cycle. In the present study, a steady state simulation model has been developed to evaluate the performance of a capillary tube based transcritical CO2 heat pump system for simultaneous heating and cooling at 73 °C and 4 °C, respectively against optimized expansion valve systems. Capillary tubes of various configurations having diameters of 1.4, 1.5 and 1.6 mm along with internal surface roughness of 0.001–0.003 mm have been tested to obtain the optimum design and operating conditions. Subcritical and supercritical thermodynamic and transport properties of CO2 are calculated employing a precision in-house property code.

It is observed that the capillary tube system is quite flexible in response to changes in ambient temperature, almost behaving to offer an optimal pressure control. System performance is marginally better with a capillary tube at higher gas cooler exit temperature. Capillary tube length turns out to be the critical parameter that influences system optimum conditions. A novel nomogram has been developed that can be employed as a guideline to select the optimum capillary tube.  相似文献   


5.
In this article, a special configuration of Stirling refrigerator for domestic refrigeration purpose is introduced. A thermal buffer tube is installed between the refrigerator cold-end and the expansion piston to improve the system reliability by moving the expansion piston from low temperature to ambient temperature. Furthermore, a commercial oil-lubricated dual-piston compressor is modified to drive the refrigerator, inside which an elastic membrane is used to transfer acoustic work and separate the working gas of the refrigerator from that of the compressor. Experimental investigations on the refrigerator are performed using helium as the working fluid and a cooling power of 200 W at −78 °C is achieved at 15 Hz working frequency and 2.5 MPa mean pressure. Meanwhile, a rough estimation of the refrigerator COP in terms of cooling power divided by input acoustic power gives the value of 0.64. It gives the possibility of building a low-cost, high efficiency domestic refrigerator.  相似文献   

6.
A number of procedures are used to predict the freezing time of food. The objective of the project reported here was to test the adequacy and applicability of the various mathematical models and methods used to predict the freezing time of a small, parallelepiped food product. The approach was to compare experimental and predicted freezing times. In this paper the experimental methods and results are described; the freezing time and the thermophysical properties of both the frozen and non-frozen food were determined. Comparison between experimental and predicted freezing times will be given in a subsequent paper. The experimental conditions consisted of individually freezing the product in an air blast; the food product was french fries. The time required to lower the temperature of a french fry from 31 to −18°C in the −29°C air blast freezer used was approximately 1200 s. The mean moisture content of the fries was 73.7%. The average densities of the non-frozen and frozen fries were 1069 and 1012 kg m−3, respectively; the average thermal conductivities were 0.50 and 1.0 W m−1 °C−1; and the heat capaciti were 3420 and 1870 J kg−1 °C−1. The overall surface heat transfer coefficient of a parallelepiped object in the air blast freezer used for these experiments was 21.0 W m−2 °C−1. The low surface heat transfer coefficient resulted in a flat temperature profile within the fries.  相似文献   

7.
In this paper, a cryogenic refrigeration method is described, which utilizes CO2 solid–gas two phase flow and the dry ice. The CO2 solid–gas two phase flow is achieved by expanding liquid CO2 and thus refrigeration process less than CO2 triple point −56.6 °C can be available. The experimental work is divided into two parts and two experimental set-ups were designed, constructed and tested. The interest of the first experiment test is the feasibility of expanding liquid CO2 into CO2 solid–gas flow in a horizontal circular tube by expansion valve. The second experiment focuses on the feasibility of the refrigeration of liquid CO2 expanding into solid–gas two phase flows used in a prototype CO2 heat pump system. The results show that solid–gas two phase flows can be achieved by expanding liquid CO2 by expansion valve in a closed CO2 heat pump system loop and low temperature refrigeration below −56.6 °C is achieved in the experiments, which give greater possibility to create a cryogenic refrigeration process below −56.6 °C for food industries, bio-medical engineering, etc.  相似文献   

8.
The performance of CO2 refrigeration systems strongly depends on the operating conditions. The specific characteristics of low critical temperature and high operating pressure limit its applications and imply the implementation of different control strategies. This study compares the performance of different CO2 system solutions for supermarket refrigeration with R404A system. Some possible modifications and improvements on the CO2 system have been investigated. The COP of the investigated CO2 system solution can be improved by about 3–7% along the ambient temperature range of 10–40 °C. The annual energy consumption calculations in three different climates; cold, moderate and hot, show that the centralized trans-critical CO2 system is good solution for cold climates whereas the NH3–CO2 cascade system has the lowest energy consumption in hot climates. Both systems proved to be good alternatives to R404A DX system for supermarket refrigeration.  相似文献   

9.
Flow pattern observations and measurements of the heat transfer in a helical grooved micro fin tube are presented and compared with results for a smooth tube. The micro fin tube used (OD of 9.52 mm) was a Wieland Cuprofin EDX tube with 60 fins (height 0.25 mm) and a helix angle of 18°. The flow pattern observations at 39.7 bar (Ts=+5 °C, pr=0.54) and 26.4 bar (Ts=−10 °C, pr=0.36) show a wide range of the annular flow region. The transition from slug to annular flow does not occur, as expected, at constant vapour quality for all mass fluxes but there is an interdependence between transition vapour quality and mass flux. For the heat transfer in the micro fin tube, measurements at 39.7 bar are presented for heat fluxes up to 120 kW m−2, mass fluxes between 75 and 250 kg m−2 s−1 and vapour qualities between 0.1 and 0.9.  相似文献   

10.
Pallet lots of frozen okra, peas, and strawberries were stored at: −24°C consstant, ±1°C (−11°F constant); at −24°C (−11°F), but power shutdown overnight, −24°C to −18°C (−11°F to 0°F); at −21°C to −18°C (−6°F to 0°F); and at −18°C to −15°C (0°F to +5°F). The temperature increases in these small rooms were estimated to be similar to the worst conditions that might exist in commercial freezer warehouses. Diurnal fluctuations were much smaller within the packages, particularly in the densely filled products located in the centre of the lots. All three time-temperature indicators provided an approximate history of storage conditions.

Compared to storage at a constant −24°C (−11°F), shutting down power at night yielded 8% saving in energy consumption, which increased to 23% when temperature was brought down to −21°C (−6°F), and to near 30% when temperatures were reduced to −18°C (0°F) only. Weight losses increased from 0.28% in the first chamber to 0.68% in the last chamber. Pouches lost much less weight than cartons, and internal packages less than those on the edge of the lots. Frost formation (in-package desiccation) increased from −24°C to −18°C (11°F to 0°F), and was more severe in the pouches than in the cartons. Clumping was reduced in all treatments with storage time. Sensory quality changes and ascorbic acid were reduced similarly, but the poorest treatment, the last chamber, lost at most half a grade score and up to 10% ascorbic acid. Total solids showed little relation to treatments.

It was tentatively concluded, depending on energy cost and availability, that −20°C to −18°C (−4°F to 0°F), overnight, might be the optimal storage condition for cartons, while pouches might be economically stored at −18°C to −16°C (0°F to 3°F) if for no longer than 6 months.  相似文献   


11.
A coaxial thermoacoustic-Stirling cooler is built and performance measurements are performed. The cooler uses the acoustic power produced by a linear motor to pump heat through a regenerator from a cold heat exchanger to an ambient one. The cooler incorporates a compact acoustic network to create the traveling-wave phasing necessary for the operation in a Stirling cycle. The network has a coaxial geometry instead of the toroidal one usually used in such systems. The design, construction and performance measurements of the cooler are presented. A measured coefficient of performance relative to Carnot of 25% and a low temperature of −54 °C are achieved by the cooler. This efficiency surpasses the performance of the most efficient standing-wave cooler by almost a factor of two.  相似文献   

12.
We succeeded in obtaining strained Si1−yCy films at a substrate temperature of 200 °C by the hot-wire cell method. The substitutional carbon concentration in films annealed at 700 °C was 0.9%, while it was limited to 0.13% for a sample grown by gas-source molecular beam epitaxy (MBE) at a substrate temperature of 700 °C. We investigated the thermal stability of strained Si1−yCy films for device application. Annealing at over 900 °C caused the formation of 3C-SiC and relaxation of the strain occurred. From this result, we found that the process temperature should be lower than 800 °C. A low-temperature MOSFET process, in which all process temperatures after deposition of Si1−yCy were lower than 800 °C, was developed and a strained Si1−yCy MOSFET was fabricated.  相似文献   

13.
Sorption cycles could be used in industrial processes to lift waste heat available at temperatures from ≈ 100 to > 200°C. Three different organic working pairs have been tested within these boundary conditions. Each pair has hexafluoroisopropanol as refrigerant. Quinoline and n-methylpyrrolidone are used as absorbents. Vapour-liquid equilibrium measurements in the range 0.1–20 bar† and 25–250°C as well as caloric measurements, estimates of specific volumes and thermal stability tests are reported. It is shown that due to stability problems only one of the working pairs can be used for the whole temperature range considered. The technical data for a conventional and an inverse absorption heat pump cycle are calculated, figures are presented and conclusions drawn for both applications.  相似文献   

14.
The minced meat market in Belgium is growing steadily; its share of the market has increased from 10 to 30% in three years. However, the mincing of meat can produce intense microbiol proliferation and thus cause food putrification.

Any changes occurring in meat, especially minced meat, are essentially of microbial origin, hence refrigeration is particularly important. With chilling, minimum temperatures must be maintained (0±1°C), since only temperatures below +3°C avoid any health risk linked with the growth of pathogens and production of toxins. Under chilled conditions the storage use of minced meat is four to five days. With freezing, temperatures of about - 18°C are needed to avoid the growth of bacteria, yeasts and mould. At this temperature micro-organisms are progressively rendered inactive, but destruction is never total. The kinetics of reducing micro-organism populations depends on the nature of the micro-organisms, the storage temperature (reduction is more intense at − 12°C that at − 18°C or at − 30°C) and the freezing rate (micro-organisms are better able to resist rapid freezing than slow freezing). One years storage at − 18°C will destroy 90 to 99% of the micro-organisms which were initially present in the product. Nevertheless, the chilled storage (+4°C) of thawed minced meat must not exceed three days.

The physico-chemical evolution of cold stored minced meat is explained. In chilled storage, the onset of flavour defects can be related to the measurement of volatile nitrogen. In frozen storage, the crystallisation of the water causes cellular breakdown. The role of packaging is important in avoiding superficial freeze-drying which is accompanied by browning. In addition, fatty matter can deteriorate by oxidation even at freezing temperatures. The degree of alteration of fats can be appreciated by the acidity index and peroxide index (showing that it is undesirable to store minced pork at − 18°C for more than nine months).

Use of a partial vacuum or modified atmosphere in combination with impermeable packaging will prolong the storage life of minced meat provided that the initial contamination is as low as possible and the maintenance of the cold chain is strictly respected.

Résumé

Le marché de la viande hachée progresse en Europe, du fait de plusieurs facteurs socio-économiques. Le hachage diminue considérablement la durée de conservation de la viande; sa consommation peut être dangereuse.

L'article analyse les points suivants: emballage, réfrigération et congélation (notamment vitesse de congélation), température et durée de conservation, atmosphères modifiées et leur influence sur les propriétés physico-chimiques de la viande et sur le comportement microbien.  相似文献   


15.
The author proposes the critical events controlling cleavage at various temperatures: at a very low temperature (−196 °C), critical event is the nucleation of a crack in ferrite at the precrack tip. At a moderate low temperature (around −100 °C), the critical event is the propagation of a carbide crack into the ferrite grain. With increasing temperature (around DBTT −80 °C), the carbide crack eligible to propagate into the ferrite grain should be the one initiated by a critical strain higher than that to initiate a carbide crack at low temperatures. The higher critical strain increases the flow stress by work hardening for making up the effect of lowering yield stress. At a higher temperature (−30 °C) after the crack tip is blunted to more than 60 μm and a fibrous crack extends, the critical event for cleavage fracture is the propagation of a grain-sized crack.  相似文献   

16.
Using CO2 trans-critical system solutions in supermarket refrigeration is gaining interest with several installations already running in different European countries. Using a computer simulation model, this study investigates the performance of two main system solutions: centralized with accumulation tank at the medium temperature level and parallel with two separate circuits for low and medium temperature levels. Both system solutions are presented and the simulation model is described in details. Calculations have been performed to design the systems and optimize their performances where basic layout and size of each solution have been defined. For ambient temperature range of 10–40 °C, the reference centralized system solution shows higher COP of about 4–21% than the reference parallel solution. Using two-stage compression in the centralized system solution instead of single stage will result in total COP which is about 5–22% higher than that of the reference centralized system and 13–17% higher than that of the improved two-stage parallel system. The two-stage centralized system solution gives the highest COP for the selected ambient temperature range.  相似文献   

17.
A cold generation system featuring a Rankine cycle powered refrigeration cycle actuated by a supersonic ejector was theoretically investigated in view of the thermo-fluid-dynamic optimization of the working fluid characteristics.

The ejector model was validated against well established performance charts relating to water. A reference system was considered in which a Rankine cycle at moderate top temperature delivers its expansion power by means of an ideal turbine to an ideal compressor of a refrigeration cycle. Two main optimizing variables were ascertained: the fluid critical temperature and the complexity of the fluid molecule. The best performance of such reference cycle is around 80% of that of an ideal fully reversible, Carnot cycle based, system (COP of 2.0 for tE,PC = 150 °C, tE,RC = 5 °C, and tC = 35 °C). As easily predictable the ejector compression introduces severe losses mainly due to the normal shock and the mixing of the motive and of the driven fluid. Overall COP for the above quoted temperatures decreases from 2.0 (reference cycle) to 0.4–0.7. The optimization of the working fluid showed that comparatively low critical temperatures are favoured and that a fluid complexity similar to that of CH5N or CH2Cl2 gives the best performance. A detailed losses analysis explains this behaviour. In particular at low reduced temperatures the theoretical gain related to the better shape in the T–S plane of both the power and the refrigeration cycle is more than offset by the higher ejector losses due to the stronger normal shock needed to cope with an increased pressure ratio.

Notwithstanding an extensive fluid screening we did not succeed in finding a fluid that could be considered optimum from all points of view including ambient and safety issues. However, a number of traditional (non-zero ODP) chloro-fluoro-carbons and of new (zero ODP) refrigerants were found that yield, on the whole, a satisfactory performance.

Provided calculated COP will be confirmed by experimental testing, ejector powered refrigerators could compete with absorption systems in many applications.  相似文献   


18.
Carbon dioxide is again becoming an important refrigerant. While the thermophysical properties are well known there is a lack of data on its heat transfer characteristics.

In this study, heat transfer coefficients for nucleate boiling of carbon dioxide are determined using a standard apparatus for the investigation of pool boiling based on a set-up from Karlsruhe [D. Gorenflo, J. Goetz, K. Bier. Vorschlag für eine Standard-Apparatur zur Messung des Wärmeübergangs beim Blasensieden. Wärme-und Stoffübertragung 16 (1982), 69–78; J. Goetz, Entwicklung und Erprobung einer Normapparatur zur Messung des Wärmeübergangs beim Blasensieden. Dissertation Universität Karlsruhe (1980).] and built at our institute. Electrically heated horizontal cylinders with an outer diameter of 16 mm and a length of 100 mm are used as heating elements. Measurements with constant heat flux are performed for different wall materials and surface roughnesses. The heat transfer is investigated within the pressure range of 0.53≤ p ≤1.43 MPa (0.072≤ p/pc ≤0.190) and a temperature range of −56≤ t ≤−30 °C, respectively. Heat fluxes of up to 80,000 W m−2 are applied.

The influences of wall material and roughness on the heat transfer coefficient are evaluated separately. The obtained coefficients are compared to generally accepted correlations and to experimental results of other authors, who used similar configurations with copper tubes and carbon dioxide. These are the only previous experimental data, which could be found. Results for copper, stainless steel and aluminium as wall materials are presented.  相似文献   


19.
Atomic layer growth of hafnium dioxide from HfCl4 and H2O has been studied at substrate temperatures ranging from 180–600°C. A quartz crystal microbalance was used for the real-time investigation of deposition kinetics and processes affecting the growth rate. It was shown that the layer-by-layer growth was self-limited at temperatures above 180°C. The data of ex situ measurements revealed that the structure, density and optical properties of the films depended on the growth temperature. The absorption coefficient of amorphous films grown at 225°C was below 40 mm−1 in the spectral range of 260–850 nm. The refractive index of the films grown at 225°C was 2.2 and 2.0 at 260 and 580 nm, respectively. The polycrystalline films with monoclinic structure grown at 500°C had about 5% higher refractive index but more than an order of magnitude higher optical losses caused by light absorption and/or scattering.  相似文献   

20.
Zr59Cu20Al10Ni8Ti3 is one among compositions of ZrCu-based alloys giving bulk amorphous material by cooling from the melt. Twin-roll casting enabling samples suitable for our inverted torsion pendulum has been processed in strips of about 0.60 mm thick.

Low temperature IF measurements have been conducted on a specimen from room temperature to −120 °C at different heating and cooling rates. IF spectra exhibit peaks at around −40 °C (cooling) and −10 °C (heating) which are sensitive to heating rates and to the number of cycle (heating and cooling). DSC measurements have also been performed to help interpret the phenomena linked to the IF peaks.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号