首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
合理地分析地热换热器中的传热过程是保证地源热泵空调系统经济可靠地运行和降低其初投资的要求,因而确定钻孔内热阻对于设计地源热泵空调系统中的地热换热器具有重要的意义.本文采用准三维模型对于对称布置的双U型埋管地热换热器钻孔内的传热情况进行了分析研究.在考虑各支管间的"热短路"的条件下,导出了循环流体在各个支管内沿钻孔深度方向上温度变化的解析表达式,进而确定了双U型埋管地热换热器钻孔内的热阻.这一理论模型为进一步定量分析影响双U型埋管地热换热器传热性能的诸多因素奠定了基础.  相似文献   

2.
对地热换热器中单个倾斜钻孔引起的稳态温度分布进行了分析。在有限长线热源和半无限大介质的假定下,采用虚拟热源法和线性叠加原理,首次导出了倾斜有限长线热源产生的三维稳态温度分布的解析解表达式,并揭示了各参数对该传热过程的影响规律。提出了稳态时地热换热器倾斜孔壁两个代表性温度的定义,并对两者进行了比较,进而给出了可供实际工程应用的简化计算式。  相似文献   

3.
桩埋螺旋管式地热换热器的传热模型   总被引:3,自引:0,他引:3  
针对现有桩埋管地热换热器构造形式的不足,提出了桩埋螺旋管式地热换热器。在分析竖直钻孔埋管地热换热器传热模型的基础上,提出了适合桩埋螺旋管式地热换热器的实心圆柱面热源模型,并用格林函数法求得了该模型的两个一维解析解表达式。计算分析表明:新的实心圆柱面模型不仅适用于桩埋螺旋管换热器的传热分析,在应用于竖直钻孔埋管地热换热器的短时间传热分析时,也优于传统的线热源模型和空心圆柱面模型。  相似文献   

4.
研究了土壤冻结对地源热泵系统中的地热换热器与其周围土壤的热交换过程的影响。探讨了土壤水分含量、斯蒂芬数、土壤初始温度(即地温)等对周围土壤温度分布、冻结锋面发展等的影响,并与不考虑土壤冻结情况作了对比分析。当考虑土壤中水分冻结时,由于冻结时放出大量的潜热,且冰的导热系数大,因此计算出地下埋管周围的土壤平均温度高,传热热阻小,设计的地热换热器规模可以变小,亦即可以减小钻孔的深度或钻孔的数量,从而可以减小地源热泵系统的初投资。另外也扩大了地下回路中防冻液的选择范围。当土壤含湿量大、土壤初始温度高时,对于系统的设计与运行是有利的。  相似文献   

5.
土壤冻结对地热换热器传热的影响   总被引:9,自引:0,他引:9  
研究了土壤 冻结对地源热泵系统中的地热换热器与其周围土壤的热交换过程的影响。探讨了土壤水分含量、斯蒂芬数、土壤初始温度(即地温)等对周围土壤温度分布、冻结锋面发展等的影响,并与不考虑土壤冻结情况作了对比分析。当考虑土壤中水分冻结时,由于冻结时放出大量的潜热,且冰的导热系数大,因此计算出地下埋管周围的土壤平均温度高,传热热阻小,设计的地热换热器规模可以变小,亦即可以减小钻孔的深度 或钻孔的数量,从而可以减小地热泵系统的 初投资。另外也扩大了地下回路中防冻液的选择范围。当土壤含湿量大、土壤初始温度高时,对于系统的设计与运行是 有利的。  相似文献   

6.
地热源热泵地下埋管换热器传热模型的综述   总被引:22,自引:1,他引:21       下载免费PDF全文
介绍了地源热泵地下换热器模型发展的过程和现状, 并给出了几种典型的模型形式。  相似文献   

7.
对地热换热器中单个倾斜钻孔引起的稳态温度分布进行了分析.在有限长线热源和半无限大介质的假定下,采用虚拟热源法和线性叠加原理,首次导出了倾斜有限长线热源产生的三维稳态温度分布的解析解表达式,并揭示了各参数对该传热过程的影响规律.提出了稳态时地热换热器倾斜孔壁两个代表性温度的定义,并对两者进行了比较,进而给出了可供实际工程应用的简化计算式.  相似文献   

8.
垂直埋管地源热泵的圆柱面传热模型及简化计算   总被引:18,自引:1,他引:18  
讨论了垂直埋管地源热泵地热换热器的传热模型,采用拉普拉斯变换法,给出了一维圆柱面模型的解析解。将该解析解与目前常用的线源模型解做了比较,指明当傅里叶数较大时,线热源的解趋向于圆柱孔的解,可以较好的模拟地下传热过程,而在傅里叶数较小时,线源模型解相比于圆柱模型解,有一定的时间延迟,误差较小;与常热流半无限大平壁解的比较,得到了小傅里叶数时该解析解的近似公式,该近似公式适用于工程应用,算法简单可靠。  相似文献   

9.
对竖直埋管在半无限大介质中的稳态传热模型进行了分析讨论.采用虚拟热源法及线性迭加原理给出了其解析解,并绘制了其相应的温度分布曲线图,指出了现行教科书中由于混淆绝热边界条件与等温边界条件而得出的关于该问题的错误结论.针对工程实际提出了孔壁中点温度和积分平均温度这两个地热换热器孔壁代表性温度的定义,给出了两者的适用于工程应用的简明计算公式,并对两者进行了比较.基于以上分析,进一步讨论了全年冷热负荷不平衡对地热换热器长期性能的影响.  相似文献   

10.
垂直埋管地源热泵的圆柱面传热模型及简化计算   总被引:1,自引:0,他引:1  
讨论了垂直埋管地源热泵地热换热器的传热模型,采用拉普拉斯变换法,给出了一维圆柱面模型的解析解。将该解析解与目前常用的线源模型解做了比较,指明当傅里叶数较大时,线热源的解趋向于圆柱孔的解,可以较好的模拟地下传热过程,而在傅里叶数较小时,线源模型解相比于圆柱模型解,有一定的时间延迟,误差较大;与常热流半无限大平壁解的比较,得到了小傅里叶数时该解析解的近似公式,该近似公式适用于工程应用,算法简单可靠。  相似文献   

11.
U型管地热换热器中介质轴向温度的数学模型   总被引:26,自引:2,他引:26  
基于能量平衡原理,经过分析与推导,得出了流体在U型埋管换热器流动过程中无量钢温度沿无量纲深度变化的关系式。根据埋管换热器的入口湿度,能更为精确地求出流体的出口温度,为进一步分析影响地热换热器性能的因素提供了条件。  相似文献   

12.
竖直U型埋地换热器两支管间热量回流的分析   总被引:2,自引:0,他引:2  
竖直U型埋地换热器两支管间存在的热量回流(“热短路”)现象对换热器实际的传热性能有较大的影响,这是工程技术人员在设计和施工U型埋地换热器时必须考虑的问题。本文利用地热换热器传热模型及设计软件,对竖直U型埋地换热器两支管间的热量回流现象进行了分析,着重讨论了两支管间距和回灌材料的导热系数对热量回流的影响。提出了减小热量回流的措施。  相似文献   

13.
竖直埋管地热换热器的稳态温度场分析   总被引:10,自引:1,他引:10  
对竖直埋管在半无限大介质中的稳态传热模型进行了分析讨论。采用虚拟热源法有线性迭加原理给出了其解析解,并绘制了其相应的温度分布曲线图,指出了现行教科书中由于混淆淆绝热边界条件与等温边界条件而得出的关于该问题的错误结论。针对工程实际提出了孔壁中点温度和积分平均温度这两个地热换热器孔壁代表性温度的定义,给出了两者的适用于工程应用的简明计算公式,并对两者进行了比较。基于以上分析,进一步讨论了全年冷热负荷不平衡地热换热器长期性能的影响。  相似文献   

14.
地热换热器间歇运行工况分析   总被引:19,自引:2,他引:19  
地源热泵应用推广的关键和难点是地热换热器的设计和运行模拟,大多数工程应用均采用简单而又实用的线热源模型。本文利用线热源解模拟出地热换热器周围土壤的温度响应,对于随时间变化的负荷或间歇负荷可以近似用一系列的矩形脉冲热(或冷)负荷来代替。因此,采用了迭加原理来分析计算随时间变化的 间歇 负荷引起的温度响应。通过模拟计算发现,在计算流体的最大温升值时,可以把间歇工作的周期性脉冲热流简化为一个持续作用的平均 热负荷和一个脉冲负荷的和。这为地 热换热器的设计计算提供了一种简单实用的方法。通过编程模拟还证明,对于地热换热器来说,冷热负荷平衡的工况是最理想的工况,长期运行不会引起地层中热量(冷量)积累而使地热换热器性能退化。  相似文献   

15.
地源热泵系统U型埋地换热器的实验研究与优化分析   总被引:1,自引:0,他引:1  
在对比几种地源热泵系统U型埋地换热器的理论计算模型的基础上,将短时间步温度反应系数模型应用于某小区办公楼的地源热泵系统,对埋地换热器进行了理论分析,并给出了与实验值对比的结果.结果表明,短时间步温度反应系数模型可以较好地预测埋地换热器的换热性能,为地源热泵系统的设计与优化提供了依据。  相似文献   

16.
桩基埋管换热器具有桩径大、埋深浅的特点,适用于桩基埋管特点的系列导热解析解模型被不断提出,但是该类模型均忽略了回填料与岩土热物性的差异。对于桩径较大的桩基埋管而言,较大的热物性差异将引起较大的计算误差。建立了区别回填料与岩土热物性差异的导热数值解模型,对比分析忽略热物性差异对桩基埋管换热计算的影响,研究表明:导热系数差异对桩基埋管长时间运行的换热热阻计算影响甚小;容积比热差异将引起桩基埋管较大的设计容量误差;桩径越大,热物性差异引起的计算误差越显著。  相似文献   

17.
有渗流时埋管换热器传热模型   总被引:1,自引:0,他引:1  
为研究地下水渗流对埋管换热器传热的影响,以移动热源的格林函数为基础,通过引入虚拟热汇,由叠加原理建立热渗耦合作用下的有限长线热源模型.将此模型与有渗流无限长线热源模型和无渗流有限长线热源模型作了对比,比较结果表明该模型计算有渗流时埋管换热器的传热更加合理.针对地下水渗流流速和土壤热物性等对传热影响的分析,表明地下水渗流导致土壤温度场发生变形,渗流速度越大,钻孔壁中点温度越快达到稳态,且稳态过余温度越低;土壤密度和比热越大,土壤导热系数越小,则土壤温度场变形越大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号