首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 551 毫秒
1.
The FAST-Net (Free-space Accelerator for Switching Terabit Networks) concept uses an array of wide-field-of-view imaging lenses to realize a high-density shuffle interconnect pattern across an array of smart-pixel integrated circuits. To simplify the optics we evaluated the efficiency gained in replacing spherical surfaces with aspherical surfaces by exploiting the large disparity between narrow vertical cavity surface emitting laser (VCSEL) beams and the wide field of view of the imaging optics. We then analyzed trade-offs between lens complexity and chip real estate utilization and determined that there exists an optimal numerical aperture for VCSELs that maximizes their area density. The results provide a general framework for the design of wide-field-of-view free-space interconnection systems that incorporate high-density VCSEL arrays.  相似文献   

2.
3.
Swinyard B  Ferlet M 《Applied optics》2007,46(25):6381-6390
We present what we believe to be a novel method for order sorting a Fabry-Perot interferometer using a Fourier transform spectrometer (FTS) in tandem. We demonstrate how the order sorting is achieved using a model instrument response as an example of an instrument working in the 5-25 microm band, although the method is generally applicable at all wavelengths. We show that an instrument of this type can be realized with a large bandwidth, a large field of view, and good transmission efficiency. These attributes make this instrument concept a useful technique in applications where true imaging spectroscopy is required, such as mapping large astronomical sources. We compare the performance of the new instrument to grating and standard FTS instruments in circumstances where the measurement is background and detector noise limited. We use a figure of merit based on the field of view and speed of detection and find that the new system has a speed advantage over a FTS with the same field of view in all circumstances. The instrument will be faster than a grating instrument with the same spectral resolution once the field of view is >13 times larger under high background conditions and >50 times larger with detector performances that match the photon noise from Zodiacal light.  相似文献   

4.
A large throughput transmission spectrometer, with a grating on a prism as the diffraction element, has been developed to study altitude distributions of auroral emissions. The imaging spectrometer disperses spectrally in one dimension while spatial information is preserved in the orthogonal direction. The image is projected onto a CCD array detector. Image processing methods have been developed to calibrate for wavelength, uniform field, spectral sensitivity, curvature of field, and spatial mapping. Single images are processed to represent a measured signal brightness in a unit of Rayleighs/pixel, from which area integrations can be made for desired spatial-spectral resolution. System performance is ~1.5-nm resolution over a 450-nm bandwidth (420-870 nm). Two spectrometer systems of this design were operated simultaneously, one with additional optical instruments and an incoherent scatter radar at Sondrestrom, Greenland, and the other at Godhavn, Greenland, which lies 290 km to the northwest and nearly in the magnetic meridian of Sondrestrom. The developed system, calibration method, and examples of performance results are presented.  相似文献   

5.
X-ray characterization measurements of the x-ray telescope (XRT) onboard the Astro-E satellite were carried out at the Institute of Space and Astronautical Science (Japan) x-ray beam facility by means of a raster scan with a narrow x-ray pencil beam. The on-axis half-power diameter (HPD) was evaluated to be 1.8?-2.2?, irrespective of the x-ray energy. The on-axis effective areas of the XRTs for x-ray imaging spectrometers (XISs) were approximately 440, 320, 240, and 170 cm(2) at energies of 1.49, 4.51, 8.04, and 9.44 keV, respectively. Those of the x-ray spectrometer (XRS) were larger by 5-10%. The replication method introduced for reflector production significantly improved the imaging capability of the Advanced Satellite for Cosmology and Astrophyics (ASCA) XRT, whose HPD is ~3.6?. The increase in the effective area by a factor of 1.5-2.5, depending upon the x-ray energy, compared with that of the ASCA, was brought about by mechanical scale up and longer focal lengths. The off-axis HPDs were almost the same as those obtained on the optical axis. The field of view is defined as the off-axis angle at which the effective area becomes half of the on-axis value. The diameter of the field of view was ~19? at 1.49 keV, decreasing with increasing x-ray energy, and became ~13? at 9.44 keV. The intensity of stray light and the distribution of this kind of light on the focal plane were measured at the large off-axis angles 30? and 60?. In the entire XIS field of view (25.4 mm x 25.4 mm), the intensity of the stray light caused by a pointlike x-ray source became at most 1% of the same pointlike source that was on the optical axis.  相似文献   

6.
Powell I  Cheben P 《Applied optics》2006,45(36):9079-9086
We describe the modeling of the generic spatial heterodyne spectrometer. This instrument resembles a somewhat modified Michelson interferometer, in which the power spectrum of the input source is determined by performing a one-dimensional Fourier transform on the output intensity profile. Code has been developed to analyze the performance of this type of spectrometer by determining the dependence of both spectral resolution and throughput on parameters such as aperture and field of view. An example of a heterodyne spectrometer is developed to illustrate the techniques employed in the modeling and a comparison undertaken between its performance and that of a conventional spectrometer. Unlike the traditional Fourier transform infrared system, the heterodyne spectrometer has the very desirable feature of having no moving components.  相似文献   

7.
Three-dimensional (3D) cellular-resolution imaging of the living human retina over a large field of view will bring a great impact in clinical ophthalmology, potentially finding new biomarkers for early diagnosis and improving the pathophysiological understanding of ocular diseases. While hardware-based and computational adaptive optics (AO) optical coherence tomography (OCT) have been developed to achieve cellular-resolution retinal imaging, these approaches support limited 3D imaging fields, and their high cost and intrinsic hardware complexity limit their practical utility. Here, this work demonstrates 3D depth-invariant cellular-resolution imaging of the living human retina over a 3 × 3 mm field of view using the first intrinsically phase-stable multi-MHz retinal swept-source OCT and novel computational defocus and aberration correction methods. Single-acquisition imaging of photoreceptor cells, retinal nerve fiber layer, and retinal capillaries is presented across unprecedented imaging fields. By providing wide-field 3D cellular-resolution imaging in the human retina using a standard point-scan architecture routinely used in the clinic, this platform proposes a strategy for expanded utilization of high-resolution retinal imaging in both research and clinical settings.  相似文献   

8.
Wu Y  Wu X  Wang Z  Chen L  Cen K 《Applied optics》2011,50(34):H22-H29
The field of view of digital in-line holography for flow field diagnostics is restricted to a small volume due to the finite size and the low spatial resolution of the available CCD. Expansion of the measurement cross section of digital holographic particle image velocimetry was investigated with a lens-based holography configuration. By sampling the chirp signal in the center lobe completely and undersampling the chirp signal in the second- and higher-order lobes by a magnified virtual recording plane produced by an imaging camera lens, the field of view is expanded. Simulation results show that the three-dimensional (3D) location and size of the relatively large particle can be reconstructed with good accuracy. A digital holographic particle image velocimetry system was established for coal particle flow field diagnostics. Compared with the lensless configuration, the field of view of the digital holography system was enlarged 1.9 times, up to 2.78 cm × 2.78 cm × 3 cm. The 3D location, size distribution, and the 3D vector field of coal powder were obtained. The results show that the application of digital in-line holography to measure large particle flow field is feasible.  相似文献   

9.
Cheng X  Wang J  Xue Q  Hong Y  Li S 《Applied optics》2011,50(35):6446-6451
A field-of-view-folding approach is proposed to extend the field of view (FOV) of a dispersive imaging spectrometer after introducing several linear arrays of imaging fiber bundles to which to replace the slit. The fiber bundles can flexibly connect fore-optics with a spectrometer to yield an imaging fiber-optic spectrometer (IFOS). The technology of FOV segmenting and folding, which can decrease simultaneously the dimension and spectral distortion of the imaging spectrometer, is described in detail. Because of the sampling function of the fiber bundles, the IFOS is a double-sampling imaging system. We analyze the effect of fiber coupling on the modulation transfer function (MTF) and then develop a cascade MTF model to estimate the imaging performance of the IFOS. A spaceborne IFOS example is presented to describe how the method can be used.  相似文献   

10.
Turbulence correction in a large field of view by use of an adaptive optics imaging system with several deformable mirrors (DM's) conjugated to various heights is considered. The residual phase variance is computed for an optimized linear algorithm in which a correction of each turbulent layer is achieved by applying a combination of suitably smoothed and scaled input phase screens to all DM's. Finite turbulence outer scale and finite spatial resolution of the DM's are taken into account. A general expression for the isoplanatic angle thetaM of a system with M mirrors is derived in the limiting case of infinitely large apertures and Kolmogorov turbulence. Like Fried's isoplanatic angle theta0,thetaM is a function only of the turbulence vertical profile, is scalable with wavelength, and is independent of the telescope diameter. Use of angle thetaM permits the gain in the field of view due to the increased number of DM's to be quantified and their optimal conjugate heights to be found. Calculations with real turbulence profiles show that with three DM's a gain of 7-10x is possible, giving the typical and best isoplanatic field-of-view radii of 16 and 30 arcseconds, respectively, at lambda = 0.5 microm. It is shown that in the actual systems the isoplanatic field will be somewhat larger than thetaM owing to the combined effects of finite aperture diameter, finite outer scale, and optimized wave-front spatial filtering. However, this additional gain is not dramatic; it is less than 1.5x for large-aperture telescopes.  相似文献   

11.
We have measured the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI’s three bolometer arrays, coupled with a Fourier transform spectrometer, will provide images of a 2′×2′ field of view with spectral information over the wavelength range 34–210 μm. Each horn-coupled bolometer consists of a transition edge sensor (TES), with a transition temperature close to 100 mK, and a thin-film Ta absorber on a thermally-isolated silicon nitride membrane. SAFARI requires extremely sensitive detectors (NEP~2×10?19 W/ \(\sqrt{\mathrm{Hz}}\) ), with correspondingly low saturation powers (~5 fW), to take advantage of SPICA’s cooled optics. To meet the challenge of testing such sensitive detectors we have constructed an ultra-low background test facility based on a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion, shielding, and vibration isolation. For optical measurements the system contains internal cold (3–30 K) and hot (~300 K) black-body calibration sources, as well as a light pipe for external illumination. We discuss our measurements of high optical efficiency in prototype SAFARI detectors and describe recent improvements to the test facility that will enable us to test the full SAFARI focal-plane arrays.  相似文献   

12.
Ohta IS  Hattori M  Matsuo H 《Applied optics》2007,46(15):2881-2892
We have developed a millimeter and submillimeter Michelson-type bolometric interferometer based on a Martin-Puplett-type Fourier-transform spectrometer named multi-Fourier-transform interferometer (MuFT). We have succeeded in proving that the MuFT is capable of performing broadband imaging observations as theoretically proposed by our previous paper (OHM) [Appl. Opt. 45, 2576 (2006)]. We succeeded in acquiring the mutual coherence signal for an extended source in broadband. By analyzing the obtained mutual coherence signal following the formula proposed in OHM, 2D source images for each wavenumber from 5 cm(-1) (150 GHz) to 35 cm(-1) (1.05 THz) with a wavenumber interval of 0.4 cm(-1) (12 GHz) were successfully extracted. The large dynamic range advantage of the MuFT proposed in OHM was confirmed experimentally.  相似文献   

13.
李军涛  夏琨  木濑洋 《包装工程》2016,37(21):115-121
目的为了提高单环单向循环搬运系统的搬运量和系统效率,在单环单向循环搬运系统中增加交叉环且优化交叉环的布局(设置位置及数量)可以避免小车间不必要的等待时间,为搬运系统提供捷径,且提高搬运效率。方法构建系统的数学模型并对不同交叉环布局(设置位置及数量)进行理论分析,在2种基本调度算法下进行仿真实验优化。结果通过理论和仿真实验分析得出,2种基本调度算法下,交叉环设置为布局1时的系统干涉情况最小,但系统单位时间搬运量较少;交叉环设置为布局4时系统单位时间搬运量最大,但系统干涉增加。结论从减少能源消耗(干涉)的角度优化,交叉环应设置1条且设置在系统正中间位置,系统干涉时间最小,单位时间搬运量也最少;从单位时间搬运量最大的角度优化,应在每2个处理站点中间设置多条交叉环,单位时间搬运量最多,但系统干涉时间最大。  相似文献   

14.
Wang S  Shepherd GG  Ward WE 《Applied optics》1997,36(9):1835-1840
The theory of and experimental results associated with field widening a Michelson interferometer in convergent light are described. The consequence of this configuration is a relatively compact optical system with improved system étendue and reduced system transmission loss. Although the convergence of light introduces significant wave aberration, adequate visibility of interference can still be obtained at a path difference sufficiently large for high-resolution Doppler imaging. Experimentally, a full-angle field of view of 9 degrees with a minimum visibility of 0.5 was achieved. The particular advantages of the new configuration in the application of two-dimensional interferometric Doppler imaging in the ultraviolet spectral region are also discussed.  相似文献   

15.
We present an imaging spectrometer developed for narrowband imaging at 1035 A with high (approximately 1-arc sec) spatial resolution over a modest field of view (approximately 5 arc min). The instrument is based on a conventional Gregorian telescope with aberration-corrected holographic rulings on the secondary optic. These aberration-correcting rulings enable stigmatic imaging in diffracted light with a minimum number of optical elements, thereby maintaining a high system efficiency. The capabilities of this instrument allow us to map the distribution of UV-emitting material in the hot (approximately 300,000 K) plasma from shocks in supernova remnants. Although this design is optimized for imaging near 1035 A, the basic concept can be applied to provide narrowband imaging or long-slit imaging spectroscopy at any wavelength. In addition, a larger field of view is possible with a corresponding loss in spatial resolution.  相似文献   

16.
A high-throughput (high throughput is the ability to process large numbers of samples) and companion informatics system has been developed and implemented. High throughput is defined as the ability to autonomously evaluate large numbers of samples, while an informatics system provides the software control of the physical devices, in addition to the organization and storage of the generated electronic data. This high throughput system includes both an ultra-violet and visible light spectrometer (UV-Vis) and a Fourier transform infrared spectrometer (FTIR) integrated with a multi sample positioning table. This method is designed to quantify changes in polymeric materials occurring from controlled temperature, humidity and high flux UV exposures. The integration of the software control of these analytical instruments within a single computer system is presented. Challenges in enhancing the system to include additional analytical devices are discussed.  相似文献   

17.
Tao X  Cho H  Janabi-Sharifi F 《Applied optics》2008,47(22):4121-4132
Insufficient vision information, such as occlusion, low resolvability, and a small field of view, represent important issues in microassembly and micromanipulation. We propose an active optical system to solve problems related to insufficient vision information through the integration of robotics and optics technologies. The proposed system integrates a double-prism system and a scanning mirror system to supply a compact flexible view. The kinematics of the imaging system is analyzed based on a simplified model initially to investigate the workspace and identify the kinematic performance. A more rigorous analysis of kinematics of the system is then made based on the ray tracing method. The simulation results based on the preliminary design are provided for investigating the workspace and demonstrating the capability of the system in imaging with variable views.  相似文献   

18.
Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey-and which requires the polishing of six optical surfaces-the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5-2 degrees field of view. Double-pass optical tests show diffraction-limited images.  相似文献   

19.
Bit-error rate for free-space adaptive optics laser communications   总被引:1,自引:0,他引:1  
An analysis of adaptive optics compensation for atmospheric-turbulence-induced scintillation is presented with the figure of merit being the laser communications bit-error rate. The formulation covers weak, moderate, and strong turbulence; on-off keying; and amplitude-shift keying, over horizontal propagation paths or on a ground-to-space uplink or downlink. The theory shows that under some circumstances the bit-error rate can be improved by a few orders of magnitude with the addition of adaptive optics to compensate for the scintillation. Low-order compensation (less than 40 Zernike modes) appears to be feasible as well as beneficial for reducing the bit-error rate and increasing the throughput of the communication link.  相似文献   

20.
Yao B  Yang H  Liang Q  Luo G  Wang L  Ren K  Gao Y  Wang Y  Qiu Y 《Analytical chemistry》2006,78(16):5845-5850
An integrated and simplified microfluidic device using a 250 microm x 1-4 cm of organic light emitting diode (OLED) array as a two-dimensional light source for single-channel and multichannel whole-column imaging detection was developed. This fluorescence detection system was used for isoelectric focusing (IEF) of R-phycoerythrin in a microchip. The IEF conditions were optimized, and the total analysis time was extremely reduced to 30 s for 2-cm-long microchannels at 700 V/cm of electric field strength without the presence of electroosmotic flow. The compression of pH gradient caused by electrolytes drawing into the microchannels was efficiently restrained when 1% hydroxylpropylmethyl cellulose in 2% ampholyte was used as the carrier for IEF. Under optimized IEF conditions, the detection limit of this system was approximately 0.6 microg/mL or 45 pg at 75 nL/column injection of R-phycoerythrin. This OLED-induced fluorescence detection system for WCID provides a high-speed IEF technique with quantitative ability and the potential for high integration and throughput microchip systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号