首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
数据去噪声是信号和图像处理领域的一个经典问题,广泛应用于各类工程实践中。由于噪声源的多样性,去噪一直是富有挑战性且十分活跃的研究课题,发展了多种经典去噪方法。近年来,随着压缩感知理论的发展,基于稀疏表示及正则化约束反问题求解方法成为图像去噪领域的重要发展方向和技术途径。本文首先回顾和总结图像噪声的来源和类型,然后针对不同类型的图像噪声,重点围绕基于稀疏表示及正则化约束的图像去噪技术进行全面综述,分析和描述了几种主要去噪方法的原理及优缺点。最后,对去噪算法的性能评价指标进行总结。  相似文献   

2.
基于双正交基字典学习的图像去噪方法   总被引:1,自引:0,他引:1  
解凯  张芬 《计算机应用》2012,32(4):1119-1121
为了提高图像去除白高斯噪声的性能,利用超完备字典作为图像的稀疏表示。超完备字典的冗余性可以有效地表示图像的各种几何奇异特征。在贝叶斯框架下,以图像块的稀疏表示定义了全局图像先验概率模型,给出了最大后验概率模型下的优化图像去噪算法。超完备字典使用两个不同的正交基构成,给出了基于奇异值分解(SVD)的优化字典计算方法。该方法充分利用正交基的特点,采用SVD方法进行高效的字典学习。基于双正交基字典的去噪算法提高了图像去噪性能,实验结果证实了所提方法的有效性。  相似文献   

3.
甘岚  张永焕 《计算机应用》2016,36(10):2895-2899
针对胃黏膜肿瘤细胞图像的高维性及复杂性的特点,为了提高稀疏表示图像识别的鲁棒性,提出了一种基于字典学习的正则化鲁棒稀疏表示(RRC)肿瘤细胞图像识别方法。该方法首先将所有的原始染色肿瘤细胞图像转化为灰度图像;然后利用具有Fisher判别约束的字典学习(FDDL)方法对肿瘤细胞图像训练样本的全局特征进行字典学习,得到具有类别标签的结构化字典;最后将具有判别性的新字典用于RRC模型进行分类识别。RRC模型是基于最大后验概率准则,将稀疏保真度表示为余项的最大后验概率函数,最终识别问题转化为求解正则化加权范数的优化逼近问题。将提出的识别方法应用于肿瘤细胞图像的最高识别率为92.4%,表明该方法能够有效地实现肿瘤细胞图像的分类。  相似文献   

4.
提出对基于MOD和K-SVD字典学习算法的图像去噪的两个方面的改进。在字典更新阶段,采用一种新的字典更新方式,在保持支集完备的同时寻找字典和表示法。在稀疏编码阶段,根据前一次追踪过程产生的部分系数进行修正和更新。分别对这两种改进进行了验证,并说明了如何进行更快速的训练以及取得更好的结果,实验结果证实了论文方法的有效性。  相似文献   

5.
传统去噪算法只考虑从含噪图像中恢复出图像信息,然而对去噪后残差信号的利用却并未加以重视。针对图像去噪后残差信号中包含有用信息的特点,提出了一种基于字典学习的残差信息融合图像去噪方法。首先使用字典学习方法对单幅含噪图像进行去噪;然后对首次降噪后的残差图像进行图像块筛选;再对筛选出的图像块再次进行去噪处理;最后在小波域实现两幅图像的融合得到最终的去噪图像。实验结果表明,与传统基于字典学习的去噪方法相比,所提方法能够进一步提取残差信号中的图像特征信息,在峰值信噪比和结构相似度上都有所提升。特别是对一些细节较为复杂的场景图像,具有更好的去噪效果,从而证明了残差信号对于图像去噪的重要作用。  相似文献   

6.
孙少超 《计算机科学》2016,43(Z11):208-209, 236
利用GMM模型对自然图像块进行学习,对高斯分量的协方差矩阵做PCA,用其特征向量组成的矩阵作为子字典,用特征值 的大小作为对稀疏系数加权的依据,并将该模型应用到CSR模型中得到一种新的去噪模型,并给出模型的优化算法。为了验证提出的模型的有效性,设计了比较的仿真实验,实验表明与一些先进的模型相比,该方法具有优势。  相似文献   

7.
基于稀疏表示的图像处理技术近年来成为研究热点,多种字典学习算法如K-SVD,OLM(Online dictionary learning Method)等予以提出;这类算法使用重叠的图像块来构建字典进行稀疏表示,产生了大量稀疏系数,致使计算过缓,且不能确保收敛。针对此问题开展研究,提出了基于近端梯度的快速字典学习算法;该算法结合了多凸优化求解,采用近端梯度算法求解字典学习过程中涉及的优化问题,有效地降低了每次迭代的复杂度,减少了迭代开销,同时能够确保收敛。合成数据上的实验表明,相较于其它经典算法,该算法进行字典学习速度更快,所耗时间较短,获得的字典更好;且在图像稀疏去噪的应用中,该算法的去噪效果表现优异。  相似文献   

8.
基于学习的单图超分辨率重建算法能获得较好的超分效果,但存在重建图像伪影较为明显的问题。为解决这一问题,提出了一种基于双正则化参数的在线字典学习超分辨率重建算法。在字典学习过程中运用在线字典学习方法(Online Dictionary Learning,ODL),并在稀疏字典生成阶段和图像重建阶段分别设置了两个不同的正则化参数。实验中生成的目标高分辨率图像PSNR比经典的稀疏编码超分方法(Sparse Coding Super-Resolution,SCSR)平均提高了0.39dB,较好地恢复图像边缘锐度和纹理细节的同时有效地抑制了伪影。ODL和双正则化参数的引入,提高了字典训练的精度,使字典训练和图像重建阶段的稀疏系数独立可调,实验中能够有效地消除伪影,提升了超分辨率重建的效果。  相似文献   

9.
基于分组字典与变分模型的图像去噪算法   总被引:1,自引:0,他引:1  
陶永鹏  景雨  顼聪 《计算机应用》2019,39(2):551-555
针对加性高斯噪声去除问题,在现有传统的K均值奇异值分解(K-SVD)字典学习算法的基础上,提出一种将字典学习与变分模型相融合的改进算法。首先,根据图像的几何和光度信息将图像进行聚类分组,再将图像组按照边缘和纹理类别进行分类,根据噪声水平和图像组类别训练一个自适应字典;其次,将通过所学字典得到的稀疏表示先验与图像本身的非局部相似先验进行融合来构建变分模型;最后,通过求解变分模型得到去噪后图像。实验结果表明,与同类去噪算法相比,当噪声比率较高时,所提算法可以解决前期算法准确性较差、纹理丢失较为严重、产生视觉伪影等问题,在视觉效果上要更为理想;同时该算法结构相似性指数有明显提高,峰值信噪比(PSNR)的值更是平均提高了10%以上。  相似文献   

10.
提出了一种基于字典学习的图像去噪算法。在K-SVD字典学习算法的基础上,改变稀疏编码中误差约束为非零元个数约束来进行字典学习。在实验的基础上分析了使用不同非零元个数去噪时对峰值信噪比的影响,提出分别针对低噪图像和高噪图像采用两个固定非零元个数来进行字典学习,获得图像的稀疏表示,从而恢复出原始图像。实验结果表明,与小波软阈值去噪方法相比,本算法能够在保留图像边缘和细节信息的同时有效地去除图像中的噪声,具有较好的视觉效果。  相似文献   

11.
为了分离出图像中具有不同特征的成分,结合变分与字典学习方法,提出一种图像分解模型和结构-纹理字典学习算法.首先在模型中引入字典约束项,使得结构-纹理学习字典互不相关,增强了2个字典的独立性;然后使用投影梯度下降算法给出一种带有字典约束的交替字典学习算法.实验结果表明,采用该算法学习得到的自适应字典可以有效地刻画图像的不同成分,不仅很好地分开了图像的结构和纹理,并且能去除噪声,最终得到高质量的图像分解结果.  相似文献   

12.
针对图像去噪过程中会导致细节和纹理结构信息丢失的不足,本文提出了基于字典学习和原子聚类的图像去噪算法。该算法首先利用含噪图像通过字典学习算法得到自适应的冗余字典,然后提取字典中每个原子的HOG特征和灰度统计特征构成特征集,并利用原子的特征集将冗余字典中的原子分成两类(不含噪原子和噪声原子),最后利用不含噪原子恢复图像,达到去噪的目的。实验结果表明,本文提出的算法无需知道噪声的先验信息,峰值信噪比好于现有的流行算法,且能较好地保持图像细节和纹理结构信息,提高了视觉效果。  相似文献   

13.
文章介绍了一种DCT过完备字典和MOD算法相结合的图像稀疏表示去噪算法。首先将噪声图像分成小图像块,并运用正交匹配跟踪算法(0MP)在图像的初始化DCT过完备字典上对小图像块进行稀疏分解;然后使用MOD字典学习算法对DCT过完备字典进行更新;最后重复该过程以获得图像的稀疏表示并重构图像。试验结果表明:该方法在实现图像去噪的同时,其去噪性能比传统的方法更有优势。  相似文献   

14.
基于多尺度脊波字典的图像去噪算法   总被引:1,自引:0,他引:1       下载免费PDF全文
邓承志 《计算机工程》2010,36(23):207-208,211
基于人眼视觉系统特性,根据图像几何结构特征,提出一种多尺度脊波字典的构造方法。构造出的多尺度脊波字典具有多分辨率、多尺度、各向异性和多方向等特性,能够更为稀疏地表示图像,从而得到一种基于多尺度脊波字典的稀疏性约束图像去噪算法。实验结果表明,该去噪算法能有效去除噪声,更好地保留图像的边缘等细节。  相似文献   

15.
随着稀疏表示理论的日渐完善,利用信号的稀疏性对图像进行修复得到广泛应用。本文针对传统的字典仅是一种无结构的扁平的原子的集合,没有充分利用原子之间相关性的问题,提出基于结构字典的图像修复算法。实验结果表明了该算法的有效性。基于结构字典的图像修复算法不仅可以训练字典更紧致地完成图像修复任务,而且训练得到的字典具有平移不变性、尺度灵活性等优点。  相似文献   

16.
基于稀疏表示和字典学习的超分辨率重建算法没有对图像进行分解,直接将整幅图像的信息都进行了学习重建.由低秩矩阵理论知,可将图像分解成低秩部分和稀疏部分.根据图像各部分信息的特征分别用不同的方法进行超分辨率重建,将能更加有效地利用图像的特征.据此提出了一种基于低秩矩阵和字典学习的超分辨率重建方法.该方法首先通过对图像进行低秩分解得到图像的低秩部分和稀疏部分,图像的低秩部分保留了图像的大部分信息.算法只对图像的低秩部分通过字典学习的方法进行超分辨率重建,图像的稀疏部分则不参与学习重建,而是采用双三线性插值的方法进行重建.实验分析表明,图像的重建质量有所提升,同时减少了一定的重建时间,提升了算法的运行速度.与现有算法比较,在视觉效果、峰值信噪比、算法运行速度等方面均获得了更好的结果.  相似文献   

17.
K-奇异值分解( K-SVD)算法在强噪声下的去噪性能较差。为此,提出一种新的图像去噪算法。使用相关系数匹配准则和噪声原子裁剪方法改进传统K-SVD算法,提高原算法的去噪性能,将非局部正则项融入图像去噪模型,并采用非局部自相似性进一步改善图像的去噪效果。实验结果表明,与传统K-SVD算法相比,该算法在提高同质区域平滑性的同时,能保留更多的纹理、边缘等细节特征。  相似文献   

18.
从噪声图像中恢复干净的图像是对图像进行有效处理与分析的首要前提之一,而去除噪声的同时保持图像的特征则是图像去噪的一个具有挑战性的问题.为了在去除噪声的同时尽量保持图像的局部结构特征,提出了一种基于图拉普拉斯正则化稀疏变换学习的图像去噪算法.通过引入图拉普拉斯正则化对邻域像素进行约束,可以较好地保护相邻像素之间的相关性,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号