首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The dissolution of MnS inclusions enriched in chromium (30 to 40 wt pct Cr) and the corrosion susceptibility of resulfurized stainless steel were studied in various NaCl- and NaClO4-based solutions by X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, scanning electron microscopy (SEM), and the electrochemical microcell technique. It has been shown that chromium-enriched inclusions do not undergo dissolution under free corrosion conditions. By contrast, electrochemical dissolution of inclusions occurs at high potential values (above 500 mV vs saturated calomel electrode) in all the solutions, followed by stable pitting. It has also been shown that some areas containing chromium-enriched inclusions exhibited stable pitting at low potentials (below 100 mV vs saturated calomel electrode) in the electrolytes with chloride ions. Field-emission SEM experiments have revealed that the matrix undergoes dissolution around these inclusions. An assumption is proposed for describing pitting corrosion mechanisms.  相似文献   

2.

In order to precisely evaluate the contribution of each bonding constituent to the pitting corrosion resistance of transient liquid phase (TLP) bonded 2205 duplex stainless steel (DSS), we have undertaken potentiodynamic polarization (PDP) and microstructural analytic measurements all across the TLP bonded area. The PDP results show that the pitting corrosion resistance of TLP bonded specimens is significantly affected by the presence of certain bonding constituents across the TLP bonded area. Electron microscopy analysis indicates that the formation of complex (Fe,Ni,Cr,Mo)3P phosphide in the bonding zone (BZ) before the completion of isothermal solidification (IS) as well as the formation of P-rich sigma phase in the diffusion-affected zone (DAZ) following the completion of the IS provides the most preferential sites for the occurrence of pitting corrosion. The PDP results also confirm that the pitting potentials (Epit) of the TLP bonded specimen before and after IS completion are, respectively, closer to the Epit of the BZ and the Epit of the DAZ rather than to those of other TLP BZs.

  相似文献   

3.
Graphite-fiber-reinforced aluminum composites (Grf/Al) with different magnesium content were fabricated with the pressure infiltration method. Their corrosion behaviors were investigated by potentiodynamic polarization measurements, immersion tests, electrochemical impedance spectroscopy (EIS) analysis, and scanning electron microscopy (SEM). Both the corrosion potential (E corr) and the pitting potential (E pit) decreased with the increase of magnesium content, whereas the corrosion current density (i corr) decreased sharply at first and then increased slightly. The i corr of Grf/Al-3.2Mg was the lowest among the four composites with different magnesium contents, which indicated that Grf/Al-3.2Mg had the best corrosion resistance. EIS showed that the capacitive reactance of Grf/Al-8.5Mg was 1682 Ω × cm−2, which was the worst, whereas that of Grf/Al-3.2Mg was 3498 Ω × cm−2, which was the best. SEM results revealed that magnesium and silicon formed the Mg2Si phase in Grf/Al-3.2Mg, which hindered the extension of corrosion crack and improved the corrosion resistance.  相似文献   

4.
The surface electrochemical corrosion activity of the economic lean duplex stainless steel LDX2101 was investigated in situ in chloride solution with a combination of long working distance microscope (LWDM) and electrochemical techniques. In addition, the site and chemical composition of the electrochemical active points on the specimen surface were also determined with integrated scanning electron microscope/energy dispersive X‐ray spectroscope (SEM/EDS) system. The results demonstrated that: (i) The reaction of α → Cr2N + γ2 precedes that of ασ + γ2 when LDX2101 was aged at 700°C. (ii) The initiation sites of electrochemical active points could be determined by LWDM in combination with potentiostatic pulse technique (PPT). (iii) The sites of electrochemical active points were found to change from inclusions (MnS/Al2O3) to secondary austenite phase (γ2), with the increase of aging time at 700°C.  相似文献   

5.
为了研究酸性NaCl溶液中双相不锈钢的耐腐蚀性能,以含微量稀土Ce的UNS S31803双相不锈钢为研究对象,采用电化学阳极极化和交流阻抗相结合的方法测试其在NaCl+HCl混合溶液中的耐腐蚀性能。利用扫描电镜(SEM)观测腐蚀后的形貌特征,采用电子探针(EPMA)检测合金元素与杂质元素的分布特征,分析Ce元素的加入对双相不锈钢电化学腐蚀行为的影响机制。结果表明,钢中存在两相的选择性腐蚀并伴有局部点蚀,其中铁素体相是腐蚀较严重的相;阳极极化测试与交流阻抗测试结果相吻合,Ce拓宽了试验钢的钝化区间;Ce通过净化钢液、降低S和P元素在相界的偏聚及使Cr、Ni和Mo等合金元素在两相中的分布更均匀等作用,提高了钢的耐腐蚀性能。  相似文献   

6.
The article describes the use of Tafel plot and electrochemical impedance spectroscopy (EIS) techniques, in order to study the corrosion process of pure zinc, nickel, and synthetic Zn-Ni alloys in various concentrations (0.25 to 1 M) of KOH solution in a temperature range 298 K to 328 K (25 °C to 55 °C). The corrosion rate increases with increasing both concentration of KOH and temperature for all investigated electrodes. The results showed that the increase in Ni content improves the corrosion resistance and increases the barrier of activation energy, and the higher value of corrosion resistance is obtained at 10 pct Ni. The electrochemical measurements using two mentioned techniques are in good agreement with the results of microhardness in that the microhardness gradually increases with increasing Ni content in the alloy. Thus, the corrosion rate of these alloys is significantly reduced compared with that of pure zinc. It is observed that the Warburg tail at low frequency completely disappears at the applied potentials in the case of alloy IV (10 pct Ni) only. This indicates that the diffusion of Zn ion species is strongly reduced. Therefore, addition of Ni to Zn has a beneficial effect, because it leads to lower loss of anode material. The results obtained at certain positive potential (+420 mV vs SCE) exhibited that the semicircle diameter in the case of alloys is lower compared with that of pure zinc. This result means that the values of the charge transfer resistance (R ct ) in the case of alloys are decreased, due to the breakdown of the oxide layer at this potential. This behavior can be considered as an important criterion for a good battery anode, due to reactivation of the alloy surface at certain positive potential (+0.420 V vs SCE) and suppression of hydrogen gas compared with those of pure zinc.  相似文献   

7.
The weathering steels are prone to pitting corrosion in an environment containing chloride ions.The pitting behavior of Cu-P-RE weathering steels and its effect on the corrosion resistance of steels were investigated by multifarious analytical techniques,such as field emission-scanning electron microscopy(FE-SEM),electron probe microanalysis(EPMA),scanning Kelvin probe force microscopy(SKPFM),electrochemical workstation and a series of immersion tests.The results show that the original stripshap...  相似文献   

8.
The electrochemical and corrosion behavior of four alloys (wt %) is investigated: Al–6Ca (further Al6Ca), Al–6Ca–1Fe (further Al6Ca1Fe), Al–1Fe (further Al1Fe), and Ak12M2. An increased iron content (up to 1%) in alloys is necessary for the high productivity of casting under pressure. Electrochemical studies are performed in a 3% aqueous NaCl solution at 26 ± 0.5°C using an IPC-Pro 3A digital potentiostat (IPC-2000). Anodic polarization is performed in a potentiodynamic mode with a potential scan rate of 1 mV/s. The initial polarization potential is–800 mV with respect to the standard hydrogen electrode. The direction of the potential scan was changed to inverse upon the “critical” current density icr = 10 mA/cm2 performing polarization with the same rate. The tendency of the alloy to form pits was judged by the ratio of amounts of electricity that passed through the electrode before pitting formation and their repassivation (Qfor/Qinv) and values of pitting resistance bases: the difference in the pitting formation potential and stationary potential and the difference in the repassivation potential and stationary potential. Corrosion tests of casting aluminum alloys were performed holding the samples in a salt fog chamber and in a 3% aqueous NaCl solution for 700 h. After these holdings, the surface morphology of the samples was investigated using an Olympus GX51 optical microscope. It is established that Al6Ca1Fe and Al6Ca experimental alloys, in contrast to the AK12M2 industrial alloy and Al1Fe alloy, are not subjected to pitting corrosion in a 3% aqueous NaCl solution. It is assumed that the increased corrosion resistance of Al6Ca1Fe alloy is caused by the fact that iron enters the Al10CaFe2 intermetallic compound, which is not an efficient cathode because of the considerable negative potentials of Al and Ca. Due to the high casting and mechanical properties of the Al6Ca1Fe alloy, which are no worse than the properties of eutectic silumin and surpass them by the corrosion resistance, the Al6Ca1Fe alloy is promising for use in an industrial scale.  相似文献   

9.
 采用力学性能测试、时效处理、电化学测试、显微硬度以及TEM微观分析等分析手段,研究了19Cr-1.6Mo和19Cr-1.6Mo-0.5Cu两种超纯铁素体不锈钢的力学性能和在3.5%NaCl腐蚀介质中的耐腐蚀性能。试验结果表明:合金元素铜的添加,提高了试验用钢的强度,同时降低了Δr值;随着时效时间的增加,铜析出相尺寸在不断的增加且均匀分布,基体的显微硬度由HV148增加到HV162;合金元素铜的添加降低了试验用钢在氯离子溶液下的耐点蚀能力,尤其是随着时效时间的增加,点蚀电位值由390mV降低到290mV,耐点蚀能力呈明显的下降趋势。  相似文献   

10.
The corrosion resistance of high-strength Cr–Ni–Mn austenitic steel containing nitrogen and copper is compared with that of Cr18Ni9 and Cr18Ni10N chromonickel steel by means of the Zive MP2 electrochemical system. The polarization curves and electrochemical characteristics of the alloys are determined in general, pitting, and intercrystallite corrosion by various media: aqueous solutions of NaCl (3%); FeCl3 6H2O (100 g/L); H2SO4 (0.5 M); H2SO4 (0.5 M) + injected H2S; and H2SO4 (0.5 M) + KSCN (0.01 M). The corrosion rates are calculated. The results indicate that all the steel samples are corrosion-resistant: they exhibit high resistance to intercrystallite corrosion and also to pitting and general corrosion in chloride-bearing media. No pitting corrosion is observed when Cr–Ni–Mn steel of balanced composition containing nitrogen (and especially steel containing both nitrogen and copper) is immersed in sea water, even when the steel’s nickel content is low. This steel outperforms traditional Cr18Ni9 steel in terms of strength and corrosion resistance, even in an acidic medium (0.5 M H2SO4).  相似文献   

11.
Electrochemical noise emanating from a corrosion situation gives indication about the nature and form of corrosion. An attempt has been made to analyse electrochemical current noise signal generated under potentiostatic condition (for metastable pitting) for SS304L–NaCl system. To begin with polarisation plots of SS304L were obtained in various test solutions to precisely know pitting potential of SS304L. It is found that Epit and ipass increase on increasing chloride content. The electrochemical current noise was measured at potentials 20–30 mV below the pitting potentials. The current time record shows two types of current transients; (i) slow rise and rapid decay and (ii) rapid rise and slow decay. Power spectral density analysis of current noise shows that the power (A2/Hz) of the signal measured at metastable pitting range increases with increasing chloride. Sampling frequency has to be properly selected otherwise some of the spikes are not recorded and as a result, size and shape of few current transients is altered.  相似文献   

12.
The linearly increasing stress test (LIST) was used to study the stress corrosion cracking (SCC) behavior of a range of pipeline steels in carbonate-bicarbonate solution under stress rate control at different applied potentials. Stress corrosion cracking, at potentials below -800 mV(SCE), was attributed to hydrogen embrittlement. Stress corrosion cracking, in the potential range from about-700 to -500 mV(SCE), was attributed to an anodic dissolution mechanism. In the anodic potential region, the SCC initiation stress was larger than the yield stress and was associated with significant plastic deformation at the cracking site. The relative SCC initiation resistance decreased with in-creasing yield strength. In the cathodic potential region, the SCC initiation stress was smaller than the yield stress of steel; it was approximately equal to the stress at 0.1 pct strain(@#@ Σ0.1pct) for all the steels. The original surface was more susceptible to SCC initiation than the polished surface.  相似文献   

13.
利用电化学实验和扫描电镜(SEM)结合能谱仪(EDS)分析研究了非金属夹杂物对钛、铌双稳定439M铁素体不锈钢耐点蚀性能的影响。动电位阳极极化实验结果表明,没有或者少夹杂物区域为工作电极的试样439M-Part击穿电位为813mV,比整个区域为工作电极的试样439M-Whole的击穿电位高出了约600mV。SEM结合EDS分析显示:试样439M-Whole的点蚀坑呈不规则形貌,主要发生于(Ti,Ca,Al)2O3复合夹杂物上,这是钝化膜表面不均匀和点蚀坑内的自催化反应共同作用的结果;而试样439M-Part的点蚀坑则位于(Ti,Nb)(C,N)夹杂物周围。研究表明,夹杂物周围有铬的偏析并形成铬的化合物,其周围出现贫铬区,引发点蚀。  相似文献   

14.
To better understand particle-induced pitting corrosion in aluminum alloys, thin foil specimens of 7075-T6 and 2024-T3 aluminum alloys, with identified constituent particles, were immersed in aerated 0.5M NaCl solution and then examined by transmission electron microscopy (TEM). The results clearly showed matrix dissolution around the iron- and manganese-containing particles (such as Al23CuFe4), as well as the Al2Cu particles. While Al2CuMg particles tended to dissolve relative to the matrix, limited local dissolution of the matrix was also observed around these particles. These results are consistent with scanning electron microscopy (SEM) observations of pitting corrosion and are discussed in terms of the electrochemical characteristics of the particles and the matrix.  相似文献   

15.
Role of Mg in the stress corrosion cracking of an Al-Mg alloy   总被引:4,自引:0,他引:4  
The corrosion and stress corrosion cracking (SCC) susceptibility of an Al-Mg alloy, AA5083, has been shown to depend on the precipitation of the Mg-rich β phase, (Al3Mg2), but not the enrichment of elemental Mg at grain boundaries to an enrichment ratio of 1.4. These results were determined by measuring the progress of Mg enrichment at grain boundaries, for increasing thermal-treatment times, using auger electron spectroscopy (AES) of grain boundaries exposed by fracture within the spectrometer and by analytical electron microscopy (AEM) of thin foils. The progress of the β phase precipitation was followed by AEM and scanning electron microscopy (SEM), for the same thermal-treatment times. The lack of a Mg-segregation effect on SCC was demonstrated by results obtained with X-ray photoelectron spectroscopy (XPS) analysis of Mg-implanted Al following in-situ electrochemical tests and SCC tests, while the dominance of β phase precipitation was demonstrated by electrochemical analysis and SCC testing. Crack-growth tests of alloy AA5083 demonstrated faster cracking at potentials anodic to the open circuit potential (OCP) with no increase at potentials cathodic to the OCP.  相似文献   

16.
The mechanical properties and bio-corrosion behaviours of T4 solid solution heat-treated Mg–1.5Zn and Mg–9Zn alloys at 340°C under different heat treatment durations were investigated. In vitro corrosion behaviour of the heat-treated alloys immersed in simulated body fluid (SBF) were measured by electrochemical, hydrogen evolution and mass loss tests. Surface examination and analytical studies were carried out using optical and scanning electron microscopy, EDX, and X-ray diffractometry. The results show that the grains size of both the alloys apparently remained unchanged after T4 treatment. T4 treatment at 340°C for 6?h slightly increased the strength and elongation of Mg–1.5Zn alloy while it significantly improved the strength and elongation of the Mg–9Zn alloy because of the presence of residual Mg51Zn20 and Mg12Zn13 secondary phase at the grain boundary. The results of electrochemical tests show that the corrosion rate of both the alloys decrease with increasing treatment temperature. The result also shows corrosion resistance of both the T4 tread alloys much better than that of as-cast samples. The corrosion mechanism exhibited that the occurrence of galvanic and pitting corrosion, which varied with the alloy composition and treatment time.  相似文献   

17.
We studied the corrosion properties of bulk nanocrystalline 304 stainless steel (BN‐SS304) produced by severe rolling technique and conventional polycrystalline 304 stainless steel (CP‐SS304) with immersion test, X‐ray photoelectron spectroscopy, ultra‐violet photoelectron spectroscopy, inductively coupled plasma emission spectrometer, and scanning electron microscope. Immersion test was carried out in 0.5 mol L?1 HCl solution for 30 days immersion interval at room temperature. It is well known that the pitting corrosion of stainless steel could be inevitable in solution containing Cl?. However, BN‐SS304 can scarcely suffer from pitting corrosion with the compact oxide film on its corrosion surface and less corrosion rate in comparison with CP‐SS304. The less corrosion rate of BN‐SS304 was attributed to the stronger O2 adsorption and compact oxide film on its corrosion surface, its less weight of 4s–4s valence electrons and its larger work function in comparison with CP‐SS304. The improved pitting corrosion resistance of BN‐SS304 resulted from the compact oxide film, weaker Cl? adsorption and less Cl? chemical activity on its corrosion surface.  相似文献   

18.
采用电化学极化与金相显微镜原位观察相结合的方法,对Q235钢在3%NaCl溶液中腐蚀的初始行为进行了研究。借助原子力显微镜对初始腐蚀的试样观察分析,发现试样在-900 mV(vs SCE)就出现了点蚀,点蚀优先在晶界附近的铁素体上生成。蚀坑长大后,优先沿轧制方向发展,而形成腐蚀沟槽。钢中夹杂没有发生活性溶解,导电性夹杂物作为阴极仅对腐蚀过程起促进作用。  相似文献   

19.
为了提高Custom 465马氏体沉淀硬化不锈钢的耐磨性,分别在440、480和520℃对580℃时效后的样品进行了2 h的盐浴渗氮,使用显微硬度计、X射线衍射仪、电化学工作站、球盘式摩擦磨损仪、表面轮廓仪、扫描电镜等设备,研究渗氮温度对Custom 465钢表面物相、硬度、渗层显微形貌、耐蚀性及耐磨性的影响.随着渗氮温度升高,耐蚀性逐渐降低,但表面硬度增加,520℃处理后表面硬度增大到1240 HV,较未处理试样的400 HV明显上升,渗层厚度达到22μm.440℃渗氮后表面物相为氮在马氏体基体中过饱和的α'N,点蚀电位降低约60 m V;480℃时有少量CrN相析出,引起点蚀电位降低约180 mV,同时磨损体积下降约43%;520℃时CrN相的含量明显升高,自腐蚀电位降低约70 mV,无明显的稳态钝化区,磨损体积降低82%,减磨效果明显.   相似文献   

20.
The influence of crystallographic orientation on the pitting corrosion behavior of Ni-Fe-Cr alloy 028 was studied using a combination of X-ray diffraction (XRD), electron backscatter diffraction (EBSD), potentiodynamic polarization technique, and atomic force microscopy (AFM). The results show that there is anisotropy of pitting corrosion that strongly depends on crystallographic orientation of the surface plane. The distribution of pit density in a standard stereographic triangle indicates that the crystallographic planes close to {100} are more prone to pitting corrosion compared to planes {110} and {111}. The surface energy calculation of (001) and (111) shows that the plane with a high atomic packing density has a low surface energy with concomitant strong resistance to pitting corrosion. A correlation function between crystallographic orientation and pitting corrosion susceptibility suggests a method that not only predicts the pitting resistance of known textured materials, but also could help to improve corrosion resistance by controlling material texture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号