首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study is to clarify the regeneration of granular activated carbon (GAC) adsorbed trichloroethylene (TCE) using wet peroxide oxidation (WPO). TCE and TOC concentrations decreased during WPO, whereas Cl(-) accumulated in water indicating that TCE was not only decomposed but was also mineralized to Cl(-) and CO(2) using WPO. Regeneration efficiencies (q/q(0)) of GAC regenerated at 150, 165 and 180 degrees C (initial pH 4) were 0.36, 0.45, 0.48, respectively. In addition, regeneration efficiencies of GAC regenerated in the solution of various initial pH (2.5, 3.0, 4.0) at 180 degrees C were 0.71, 0.60, 0.48, respectively. These results suggest that regeneration of GAC is more effective at higher reaction temperature and lower initial pH of the solution. In the repeated regeneration of GAC, the adsorption capacity of GAC for TCE gradually decreased and regeneration efficiency of the regenerated GAC at sixth step was 0.40. The adsorption capacity loss of regenerated GAC is probably due to oxidation of GAC during WPO.  相似文献   

2.
利用烧杯试验研究了一种新型磁性离子交换树脂(MIEX)对水中溴离子的去除效能,并考察了水中常见阴离子及有机物对其去除效果的影响。试验结果表明,MIEX可以有效去除纯水中的溴离子,投加量为10 mL/L和20 mL/L时其对溴离子去除率均在90%以上,且达到交换平衡时间分别为5 min和3 min。水中常见的其它带负电物质会在一定程度上影响溴离子的去除效果,在常见的含量条件下10 mL/L的MIEX对溴离子的去除率一般在50%以上。阴离子含量以及MIEX的选择性是影响其对溴离子去除效果的主要因素。有机物的存在使MIEX对溴离子的去除率明显下降,去除率在70%左右。MIEX对有机物、阴离子的去除过程存在差异:10 mL/L的MIEX去除阴离子的反应平衡时间在5 min左右,而去除有机物的平衡时间则较长,其对2种表征有机物含量的指标(UV 254、DOC)的去除稳定时间均在20 min以上。  相似文献   

3.
The removal of natural organic matter (NOM) from lake water was studied in two pilot-scale adsorbers containing granular activated carbon (GAC) with different physical properties. To study the adsorption behavior of individual NOM fractions as a function of time and adsorber depth, NOM was fractionated by size exclusion chromatography (SEC) into biopolymers, humics, building blocks, and low molecular weight (LMW) organics, and NOM fractions were quantified by both ultraviolet and organic carbon detectors. High molecular weight biopolymers were not retained in the two adsorbers. In contrast, humic substances, building blocks and LMW organics were initially well and irreversibly removed, and their effluent concentrations increased gradually in the outlet of the adsorbers until a pseudo-steady state concentration was reached. Poor removal of biopolymers was likely a result of their comparatively large size that prevented access to the internal pore structure of the GACs. In both GAC adsorbers, adsorbability of the remaining NOM fractions, compared on the basis of partition coefficients, increased with decreasing molecular size, suggesting that increasingly larger portions of the internal GAC surface area could be accessed as the size of NOM decreased. Overall DOC uptake at pseudo-steady state differed between the two tested GACs (18.9 and 28.6 g-C/kg GAC), and the percent difference in DOC uptake closely matched the percent difference in the volume of pores with widths in the 1-50 nm range that was measured for the two fresh GACs. Despite the differences in NOM uptake capacity, individual NOM fractions were removed in similar proportions by the two GACs.  相似文献   

4.
Wang H  Ho L  Lewis DM  Brookes JD  Newcombe G 《Water research》2007,41(18):4262-4270
Microcystins are cyanobacterial toxins that are problematic for water authorities due to their resistance to conventional water treatment. Granular activated carbon (GAC) filtration has been shown to be effective in removing microcystin from water using both adsorption and biodegradation removal mechanisms; however, little is known regarding which removal mechanism predominates and to what extent. In this study, microcystin removal due to adsorption and biodegradation in GAC filtration were discriminated and assessed by commissioning three parallel laboratory columns, including a sterile GAC column, a conventional GAC column and a sand column. The results demonstrate that biodegradation is an efficient removal mechanism once it commences and that the rate of biodegradation was dependent upon temperature and initial bacterial concentration. Adsorption of microcystins was prevalent during the initial stages of the GAC columns and was modelled using the homogeneous surface diffusion model (HSDM). The HSDM provided evidence that an active biofilm present on the surface of the conventional GAC hindered adsorption of microcystin compared with the sterile GAC with no active biofilm. Up to 70% removal of microcystin-LR was still observed after 6 months of operation of the sterile GAC column, indicating that adsorption still played a vital role in the removal of this toxin.  相似文献   

5.
Liang CH  Chiang PC  Chang EE 《Water research》2007,41(15):3241-3250
This investigation developed a non-steady-state numerical model to differentiate the adsorption and biodegradation quantities of a biological activated carbon (BAC) column. The mechanisms considered in this model are adsorption, biodegradation, convection and diffusion. Simulations were performed to evaluate the effects of the major parameters, the packing media size and the superficial velocity, on the adsorption and biodegradation performances for the removal of dissolved organic carbon based on dimensionless analysis. The model predictions are in agreement with the experimental data by adjusting the liquid-film mass transfer coefficient (k(bf)), which has high correlation with the Stanton number. The Freundlich isotherm constant (N(F)), together with the maximum specific substrate utilization rate (k(f)) and the diffusion coefficient (D(f)), is the most sensitive variable affecting the performance of the BAC. Decreasing the particle size results in more substrate diffusing across the biofilm, and increases the ratio of adsorption rather than biodegradation.  相似文献   

6.
Quesnel D  Nakhla G 《Water research》2005,39(4):677-687
An industrial wastewater that was pretreated by an aerobic thermophilic bacterial consortium (THE) was subjected to additional treatability studies by granular activated carbon (GAC) and a conventional activated sludge (CAS). The removal of dissolved organic carbon (DOC) in both systems was generally found to be similar. While GAC was able to attain better effluent concentrations of toluene and methyl isobutyl ketone (MIBK), the CAS was much more efficient at removing acetone. Furthermore, unlike the GAC, the performance of the CAS was not influenced by the high degree of variability in the influent wastewater. Characterization of the influent thermophilic wastewater using gas chromatography-mass spectroscopy (GC/MS) was performed to quantify the micropollutants as well as to evaluate removal efficiencies from the GAC and CAS systems.  相似文献   

7.
Indigenous bacteria are essential for the performance of drinking water biofilters, yet this biological component remains poorly characterized. In the present study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the first six months of operation. GAC particles were sampled from four different depths (10, 45, 80 and 115 cm) and attached biomass was measured with adenosine tri-phosphate (ATP) analysis. The attached biomass accumulated rapidly on the GAC particles throughout all levels in the filter during the first 90 days of operation and maintained a steady state afterward. Vertical gradients of biomass density and growth rates were observed during start-up and also in steady state. During steady state, biomass concentrations ranged between 0.8-1.83 x 10−6 g ATP/g GAC in the filter, and 22% of the influent dissolved organic carbon (DOC) was removed. Concomitant biomass production was about 1.8 × 1012 cells/m2h, which represents a yield of 1.26 × 106 cells/μg. The bacteria assimilated only about 3% of the removed carbon as biomass. At one point during the operational period, a natural 5-fold increase in the influent phytoplankton concentration occurred. As a result, influent assimilable organic carbon concentrations increased and suspended bacteria in the filter effluent increased 3-fold as the direct consequence of increased growth in the biofilter. This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilters.  相似文献   

8.
Velten S  Hammes F  Boller M  Egli T 《Water research》2007,41(9):1973-1983
Granular activated carbon (GAC) filtration is used during drinking water treatment for the removal of micropollutants such as taste and odour compounds, halogenated hydrocarbons, pesticides and pharmaceuticals. In addition, the active microbial biomass established on GAC is responsible for the removal of biodegradable dissolved organic carbon compounds present in water or formed during oxidation (e.g., ozonation and chlorination) processes. In order to conduct correct kinetic evaluations of DOC removal during drinking water treatment, and to assess the state and performance of full-scale GAC filter installations, an accurate and sensitive method for active biomass determination on GAC is required. We have developed a straight-forward method based on direct measurement of the total adenosine tri-phosphate (ATP) content of a GAC sample and other support media. In this method, we have combined flow-cytometric absolute cell counting and ATP analysis to derive case-specific ATP/cell conversion values. In this study, we present the detailed standardisation of the ATP method. An uncertainty assessment has shown that heterogeneous colonisation of the GAC particles makes the largest contribution to the combined standard uncertainty of the method. The method was applied for the investigation of biofilm formation during the start-up period of a GAC pilot-scale plant treating Lake Zurich water. A rapid increase in the biomass of up to 1.1 x 10(10)cells/g GAC dry weight (DW) within the first 33 days was observed, followed by a slight decrease to an average steady-state concentration of 7.9 x 10(9)cells/g GAC DW. It was shown that the method can be used to determine the biomass attached to the GAC for both stable and developing biofilms.  相似文献   

9.
A method for determining the concentration of active microbial biomass in granular activated carbon (GAC) filters used in water treatment was developed to facilitate studies on the interactions between adsorption processes and biological activity in such filters. High-energy sonication at a power input of 40 W was applied to GAC samples for the detachment of biomass which was measured as adenosine triphosphate (ATP). Modelling of biomass removal indicated that a series of six to eight sonication treatments of 2 min each yielded more than 90% of the attached active biomass. The ATP concentrations in 30 different GAC filters at nine treatment plants in The Netherlands ranged from 25 to 5000 ng ATP cm(-3) GAC, with the highest concentrations at long filter run times and pretreatment with ozone. A similar concentration range was observed in nine rapid sand (RS) filters. ATP concentrations correlated significantly (p<0.05) with total direct bacterial cell counts in each of these filter types, but the median value of the ATP content per cell in GAC filters (2.1 x 10(-8) ng ATP/cell) was much lower than in the RS filters (3.6 x 10(-7) ng ATP/cell). Average biofilm concentrations ranging from 500 to 10(5) pg ATP cm(-2) were calculated assuming spherical shapes for the GAC particles but values were about 20 times lower when the surface of pores >1 microm diameter is included in these calculations. The quantitative biomass analysis with ATP enables direct comparisons with biofilm concentrations reported for spiral wound membranes used in water treatment, for distribution system pipes and other aquatic environments.  相似文献   

10.
Ho L  Newcombe G 《Water research》2005,39(15):3668-3674
The effect of natural organic material (NOM) and turbidity on the powdered activated carbon (PAC) adsorption of the odour compound 2-methylisoborneol (MIB) was evaluated during alum coagulation. The character of the flocs, in terms of their size and fractal dimensions (Df), was used to interpret the observed adsorption behaviour of MIB during the coagulation process. As the alum dose was increased, the adsorption of MIB decreased. This was determined to be due to the size of the flocs, with larger flocs incorporating PAC into their structure, reducing the efficiency of mixing, and the bulk diffusion kinetics for the MIB molecule. The presence of turbidity also reduced MIB adsorption due to the formation of larger flocs. The character of NOM was found to have a greater influence on the adsorption of MIB than the floc structure.  相似文献   

11.
In order to estimate the adsorbability by activated carbon of organic compounds dissolved in aqueous solutions, the contribution of individual atoms to the adsorption process is calculated. The contribution of carbon, bromine and chlorine atoms is positive, that of oxygen atoms is negative, that of hydrogen atoms is very small and that of nitrogen atoms is influenced by the kind of functional group in which they are contained. The dominant factors governing adsorption are the numbers of carbon and oxygen atoms in a molecule. The activated carbon's effectiveness for adsorption of organic compounds dissolved in solutions can be predicted from such water quality indexes as total organic carbon, total organic nitrogen, total organic halogen an total oxygen demand.  相似文献   

12.
Removal of surfactants by powdered activated carbon and microfiltration   总被引:10,自引:0,他引:10  
Direct and indirect releases of large quantities of surfactants to the environment may result in serious health and environmental problems. Therefore, surfactants should be removed from water before release to the environment or delivery for public use. Using powdered activated carbon (PAC) as adsorbent and separating particles with a membrane may be an effective technique to remove surfactants. In this study, the removal of surfactants by microfiltration and PAC was investigated and the influences of the operating parameters on the effectiveness on microfiltration were determined. An anionic (LABS) and a cationic surfactant (CTAB) were selected for the experiments. A series of batch experiments were performed to determine the sorption isotherms of surfactants to PAC. Then microfiltration experiments were carried out. The results showed that formation of secondary membrane on the surface and, within the pores of the membrane, increased the retention of surfactants significantly. Increase in transmembrane pressure and pore size of the membrane decreased the rejection rates, but increase in cross-flow velocity increased the rejection rate. Temperature had no apparent affect on the efficiency of surfactant removal. Presence of electrolyte had different effects on CTAB and LABS. The rejection rates of CTAB significantly increased when the concentration of NaCl increased; however, a slight decrease was observed in the rejection rate of LABS at the same conditions.  相似文献   

13.
Zhang S  Shao T  Karanfil T 《Water research》2011,45(3):1378-1386
Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs.  相似文献   

14.
Ozonation followed by granular activated carbon (GAC) is one of the advanced drinking water treatments. During GAC treatment, ammonia can be oxidized by ammonia-oxidizing microorganisms associated with GAC. However, there is little information on the abundance and diversity of ammonia-oxidizing microorganisms on GAC. In this study, the nitrification activity of GAC and the settlement of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in GAC were monitored at a new full-scale advanced drinking water treatment plant in Japan for 1 year after plant start-up. Prechlorination was implemented at the receiving well for the first 10 months of operation to treat ammonia in raw water. During this prechlorination period, levels of both AOA and AOB associated with GAC were below the quantification limit. After prechlorination was stopped, 105 copies g-dry−1 of AOA amoA genes were detected within 3 weeks and the quantities ultimately reached 106-107 copies g-dry−1, while levels of AOB amoA genes still remained below the quantification limit. This observation indicates that AOA can settle in GAC rapidly without prechlorination. The nitrification activity of GAC increased concurrently with the settlement of AOA after prechlorination was stopped. Estimation of in situ cell-specific ammonia-oxidation activity for AOA on the assumption that only AOA and AOB determined can contribute to nitrification suggests that AOA may account for most of the ammonia-oxidation. However, further validation on AOB contribution is required.  相似文献   

15.
Nitrification is an important biological function of granular activated carbon (GAC) used in advanced drinking water purification processes. Newly discovered ammonia-oxidizing archaea (AOA) have challenged the traditional understanding of ammonia oxidation, which considered ammonia-oxidizing bacteria (AOB) as the sole ammonia-oxidizers. Previous studies demonstrated the predominance of AOA on GAC, but the contributions of AOA and AOB to ammonia oxidation remain unclear. In the present study, DNA-stable isotope probing (DNA-SIP) was used to investigate the autotrophic growth of AOA and AOB associated with GAC at two different ammonium concentrations (0.14 mg N/L and 1.4 mg N/L). GAC samples collected from three full-scale drinking water purification plants in Tokyo, Japan, had different abundance of AOA and AOB. These samples were fed continuously with ammonium and 13C-bicarbonate for 14 days. The DNA-SIP analysis demonstrated that only AOA assimilated 13C-bicarbonate at low ammonium concentration, whereas AOA and AOB exhibited autotrophic growth at high ammonium concentration. This indicates that a lower ammonium concentration is preferable for AOA growth. Since AOA could not grow without ammonium, their autotrophic growth was coupled with ammonia oxidation. Overall, our results point towards an important role of AOA in nitrification in GAC filters treating low concentration of ammonium.  相似文献   

16.
Granular activated carbon (GAC) adsorbers are often the penultimate stage of surface water treatment and provide ideal habitats for invertebrates. Proliferation of chlorine-resistant invertebrates in GAC adsorbers may lead to their efflux into distribution systems, possibly resulting in contamination of customers' tap water. GAC adsorber sampling and laboratory experiments were undertaken to determine the effects of routine backwashing on GAC adsorber populations of the chlorine-resistant snail Potamopyrgus jenkinsi at a water treatment works. GAC adsorber sampling results suggested that routine backwashing altered the spatial distribution of snails, but not their overall abundance. In small-scale glass columns 40-50% of the smallest (0.3-0.6 mm shell height) juvenile snails were removed by a GAC backwash bed expansion of 30-40%; however, bed expansions of greater than 20% were not possible in the GAC adsorbers.  相似文献   

17.
Geosmin and 2-methylisoborneol (MIB) were removed from solutions in freshwater (100–180 ng/l) by adsorption on US-Y zeolite (SiO2/Al2O3 = 80). The zeolite can be re-used by burning off the adsorbed organics. Adsorption efficiency for geosmin and MIB was not reduced by water hardness or the presence of low concentrations (5 mg C/l) of humic acid.  相似文献   

18.
In this research, the adsorption of two herbicides, alachlor (ALA) and terbuthylazine (TBA), on granular activated carbon (GAC) in the presence of well-characterized peptide fraction of cellular organic matter (COM) produced by cyanobacterium Microcystis aeruginosa was studied. Two commercially available GACs were characterized using nitrogen gas adsorption and surface charge titrations. The COM peptides of molecular weight (MW) < 10 kDa were isolated and characterized using MW fractionation technique and high-performance size exclusion chromatography (HPSEC). The effect of surface charge on the adsorption of COM peptides was studied by means of equilibrium adsorption experiments at pH 5 and pH 8.5. Electrostatic interactions and hydrogen bonding proved to be important mechanisms of COM peptides adsorption. The adsorption of ALA and TBA on granular activated carbon preloaded with COM peptides was influenced by solution pH. The reduction in adsorption was significantly greater at pH 5 compared to pH 8.5, which corresponded to the increased adsorption of COM peptides at pH 5. The majority of the competition between COM peptides and both herbicides was attributed to low molecular weight COM peptides with MW of 700, 900, 1300 and 1700 Da.  相似文献   

19.
Bayer P  Heuer E  Karl U  Finkel M 《Water research》2005,39(9):1719-1728
Technical constraints can leave a considerable freedom in the design of a technology, production or service strategy. Choosing between economical or ecological decision criteria then characteristically leads to controversial solutions of ideal systems. For the adaptation of granular-activated carbon (GAC) fixed beds, various technical factors determine the adsorber volume required to achieve a desired service life. In considering carbon replacement and recycling, a variety of refill strategies are available that differ in terms of refill interval, respective adsorber volume, and time-dependent use of virgin, as well as recycled GAC. Focusing on the treatment of contaminant groundwater, we compare cost-optimal reactor configurations and refill strategies to the ecologically best alternatives. Costs and consumption of GAC are quantified within a technical-economical framework. The emissions from GAC production out of hard coal, transport and recycling are equally derived through a life cycle impact assessment. It is shown how high discount rates lead to a preference of small fixed-bed volumes, and accordingly, a high number of refills. For fixed discount rates, the investigation reveals that both the economical as well as ecological assessment of refill strategies are especially sensitive to the relative valuation of virgin and recycled GAC. Since recycling results in economic and ecological benefits, optimized systems thus may differ only slightly.  相似文献   

20.
More stringent legislation on dissolved organic matter (DOM) urges the drinking water industry to improve in DOM removal, especially when applied to water with high dissolved organic carbon (DOC) contents and low turbidity. To improve conventional processes currently used in drinking water treatment plants (DWTPs), the performances of a hybrid membrane bioreactor containing fluidised activated carbon were investigated at the DWTP of Rennes. Preliminary results showed that the residual DOC was the major part of the non-biodegradable fraction. In order to increase the global efficiency, an upstream oxidation step was added to the process. Ozone was chosen to break large molecules and increase their biodegradability. The first step consisted of carrying out lab-scale experiments in order to optimise the necessary ozone dose by measuring the process yield, in terms of biodegradable dissolved organic carbon (BDOC). Secondly, activated carbon adsorption of the DOC present in ozonated water was quantified. The whole process was tested in a pilot unit under field conditions at the DWTP of Rennes (France). Lab-scale experiments confirmed that ozonation increases the BDOC fraction, reduces the aromaticity of the DOC and produces small size organic compounds. Adsorption tests led to the conclusion that activated carbon unexpectedly removes BDOC first. Finally, the pilot unit results revealed an additional BDOC removal (from 0.10 to 0.15 mg L−1) of dissolved organic carbon from the raw water considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号