首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一个用气—液喷射器代替机械泵的新型双喷射制冷系统。双喷射制冷系统中没有机械泵,从而循环本身不需要消耗电能。研究了气—液喷射器的运行特性和喷射系数与工作参数的关系。分析了双喷射制冷系统COP与发生器温度、冷凝器温度的关系。比较了以R123和R134a为制冷剂的太阳能双喷射制冷系统运行性能。模拟了太阳能双喷射制冷系统的运行性能,COP可达0.2-0.3。  相似文献   

2.
Energy and exergy balances were done on a novel solar bi‐ejector refrigeration system with R123, whose circulation pump is replaced by an injector. The analysis result of the novel system was compared with that of the original one. The effect of operation condition on system energy efficiency, exergy efficiency and exergy loss was analyzed, and the dynamic performance of a designed solar bi‐ejector refrigeration system was also studied. The comparative results indicate that under the same operating condition, the novel system and the original system have equal energy efficiency, exergy efficiency and exergy loss, and the only difference between them is the exergy losses of the generators and the added injector. The other conclusions mainly include: the solar collector has the largest exergy loss rate of over 90% and for the bi‐ejector refrigeration subcycle, the ejector has the largest exergy loss rate of about 5%; the total exergy loss changes inversely proportional to the evaporation temperature and positively proportional to the condensation temperature; when the other parameters are fixed, there exists an optimum generation temperature, at which the overall energy and exergy efficiencies are both the maximum and the total exergy loss is the minimum. The study points out the direction for optimizing the novel solar bi‐ejector refrigeration system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Integration of the heat pipe with an ejector will result in a compact and high performance system. The concept of the heat pipe/ejector refrigeration cycle is discussed, in this paper. The needed driving capillary forces are firmly established. The basic characteristics of the system, such as entrainment ratio, coefficient of performance, exergy efficiency and thermal efficiency of the system are evaluated. Also, the zero-dimensional constant pressure mixing theory is applied to ejector. In this study, water is used as the working fluid. Whenever the mixed flow is supersonic, a normal shockwave is assumed to occur upstream of diffuser inlet. The simulation results indicate that, the coefficient of performance can reach about 0.30 at Te = 10 °C, Tc = 30 °C and Tg = 100 °C. Also, the second law efficiency of the heat pipe/ejector refrigeration cycle increases with increasing evaporator temperature and decreasing condenser temperature. It is seen that, the maximum heat pipe cooling capacity obtains for large heat pipe diameters, near the small heat pipe lengths. It has proven that, this refrigeration system can be widely used in many areas, especially in renewable energy utilization such as solar energy.  相似文献   

4.
A novel solar intermittent refrigeration system for ice production developed in the Centro de Investigación en Energía of the Universidad Nacional Autónoma de México is presented. The system operates with the ammonia/lithium nitrate mixture. The system developed has a nominal capacity of 8 kg of ice/day. It consists of a cylindrical parabolic collector acting as generator-absorber. Evaporator temperatures as low as −11 °C were obtained for several hours with solar coefficients of performance up to 0.08. It was found that the coefficient of performance increases with the increment of solar radiation and the solution concentration. A dependency of the coefficient of performance was not founded against the cooling water temperature. Also it was found that the maximum operating pressure increases meanwhile the generation temperature decreases with an increase of the solution concentration.  相似文献   

5.
太阳能双喷射式制冷系统性能计算分析   总被引:1,自引:0,他引:1  
建立了双喷射式制冷系统的物理模型和数学模型,计算了太阳能双喷射式制冷系统中气体喷射器和气-液喷射器的性能参数、系统性能参数随制冷剂和工况的变化。结果表明,在给定的发生温度、蒸发温度、冷凝温度范围内,气体喷射器的喷射系数和系统COP均随发生温度和蒸发温度的升高而增大,随冷凝温度的增大而减小。气-液喷射器的喷射系数则随发生温度的升高而减小,除水外,均随冷凝温度的升高而减小。  相似文献   

6.
A. El Fadar  A. Mimet 《Solar Energy》2009,83(6):850-861
This article suggests a numerical study of a continuous adsorption refrigeration system consisting of two adsorbent beds and powered by parabolic trough solar collector (PTC). Activated carbon as adsorbent and ammonia as refrigerant are selected. A predictive model accounting for heat balance in the solar collector components and instantaneous heat and mass transfer in adsorbent bed is presented. The validity of the theoretical model has been tested by comparison with experimental data of the temperature evolution within the adsorber during isosteric heating phase. A good agreement is obtained. The system performance is assessed in terms of specific cooling power (SCP), refrigeration cycle COP (COPcycle) and solar coefficient of performance (COPs), which were evaluated by a cycle simulation computer program. The temperature, pressure and adsorbed mass profiles in the two adsorbers have been shown. The influences of some important operating and design parameters on the system performance have been analyzed.The study has put in evidence the ability of such a system to achieve a promising performance and to overcome the intermittence of the adsorption refrigeration systems driven by solar energy. Under the climatic conditions of daily solar radiation being about 14 MJ per 0.8 m2 (17.5 MJ/m2) and operating conditions of evaporating temperature, Tev = 0 °C, condensing temperature, Tcon = 30 °C and heat source temperature of 100 °C, the results indicate that the system could achieve a SCP of the order of 104 W/kg, a refrigeration cycle COP of 0.43, and it could produce a daily useful cooling of 2515 kJ per 0.8 m2 of collector area, while its gross solar COP could reach 0.18.  相似文献   

7.
Solar refrigeration represents an important application of solar energy due to the excellent matching between the high sunshine and the refrigeration needs. Solar adsorption refrigeration devices are among the significant techniques used to meet the needs for cooling requirements. Several solar refrigeration systems have been proposed and are under development such as sorption systems including liquid/vapor, solid/vapor absorption, adsorption, vapor compression and others. The purpose of this paper is to identify the influence of a cylindrical adsorber on the performances of a solar adsorption refrigerating machine. The adsorber heated by solar energy contains an activated carbon–ammonia pair; it is composed by many cylindrical tubes welded using external fins. A model based on the conservation equations of energy and mass in the adsorber has been developed and well described. Using real solar irradiance data as well as many initial conditions, the model computes for each point and in the considered time interval during the day, the temperature, the adsorbed mass, the pressure inside the adsorber and the solar performance coefficient (COP). The results show that the optimal diameter of the adsorber with fins is greater than the one without fins. Moreover the mass cycled in the case of an adsorber equipped with external fins is more significant than the one without fins, and the maximal temperature reached in the adsorber with fins attains 97 °C while in the adsorber without fins reaches 77 °C. Thus, the performances of the solar adsorption refrigerating machine with an adsorber equipped with fins are higher than the machine without fins.  相似文献   

8.
A novel lithium bromide/water mixed absorption refrigeration cycle that is suitable for the utilization of solar air-conditioning and can overcome the draw-backs of low system overall efficiency of traditional solar absorption refrigeration air-condition systems is presented. The accessorial high pressure generator was added in the cycle. The lithium bromide solution flowing out from the high pressure generator was mixed with the solution from the low pressure absorber to increase lithium bromide solution concentration and decrease pressure in the high pressure absorber. The performance of a mixed absorption refrigeration cycle was analyzed. The theoretical analysis shows that the highest COP is 0.61, while the highest available temperature difference of heat resource is 33.2°C. The whole coefficient of performance of the solar air-conditioning using mixed absorption cycle is 94.5% higher than that of two-stage absorption. The advantages of solar air-conditioning can be markedly made use of by the cycle. __________ Translated from Journal of Huazhong University of Science and Technology, 2006, 34(8): 62–64 [译自: 华中科技大学学报]  相似文献   

9.
A solar-powered adsorption air-conditioning system was designed and installed in the green building of Shanghai Research Institute of Building Science. The system contained 150 m2 solar collectors and two adsorption chillers with nominal refrigeration capacity of 8.5 kW. Based on performance characteristics of the adsorption chiller, the operation mode of the solar-powered air-conditioning system was optimized by maintaining a phase shift of 540 s between the two adsorption chillers. Thereafter, the whole system realized stable operation by the balance of heat consumption and refrigeration output. From June to August of 2005, the solar-powered air-conditioning system continuously ran between 9:00 and 17:00. The operation performance of the system under representative working condition showed that the average refrigeration output of the solar-powered air-conditioning system was 15.3 kW during an 8 h operation and the maximum value exceeded 20 kW. Solar fraction for the system in summer was 71.7%, which corresponded to the designed cooling load (15 kW). Compared with the ambient temperature, it was deduced that solar radiant intensity had a more distinct influence on the performance of solar-powered air-conditioning system.  相似文献   

10.
Solar cavity receiver plays a dominant role in the light-heat conversion. Its performance can directly affect the efficiency of the whole power generation system. A combined calculation method for evaluating the thermal performance of the solar cavity receiver is raised in this paper. This method couples the Monte-Carlo method, the correlations of the flow boiling heat transfer, and the calculation of air flow field. And this method can ultimately figure out the surface heat flux inside the cavity, the wall temperature of the boiling tubes, and the heat loss of the solar receiver with an iterative solution. With this method, the thermal performance of a solar cavity receiver, a saturated steam receiver, is simulated under different wind environments. The highest wall temperature of the boiling tubes is about 150 °C higher than the water saturation temperature. And it appears in the upper middle parts of the absorbing panels. Changing the wind angle or velocity can obviously affect the air velocity inside the receiver. The air velocity reaches the maximum value when the wind comes from the side of the receiver (flow angle α = 90°). The heat loss of the solar cavity receiver also reaches a maximum for the side-on wind.  相似文献   

11.
A new configuration of a bi-ejector refrigeration system is presented. The system incorporates two ejectors. The purpose of one is to suck refrigerant vapour from the evaporator and discharge to the condenser; the other acts as a jet pump to pump liquid refrigerant from the condenser to the generator. An analysis model for the bi-ejector refrigeration system and a one-dimensional flow model for the gas–liquid ejector were established. The performances of the gas–liquid ejector and the refrigeration cycle were studied using numerical modelling. The results show that the performances of ejectors and system depend a great deal on the refrigerants as well as on operation conditions.  相似文献   

12.
A novel lithium bromide/water mixed absorption refrigeration cycle that is suitable for the utilization of solar air-conditioning and can overcome the drawbacks of low system overall efficiency of traditional solar absorption refrigeration air-condition systems is presented. The accessorial high pressure generator was added in the cycle. The lithium bromide solution flowing out from the high pressure generator was mixed with the solution from the low pressure absorber to increase lithium bromide solution concentration and decrease pressure in the high pressure absorber. The performance of a mixed absorption refrigeration cycle was analyzed. The theoretical analysis shows that the highest COP is 0.61, while the highest available temperature difference of heat resource is 33.2°C. The whole coefficient of performance of the solar air-conditioning using mixed absorption cycle is 94.5% higher than that of two-stage absorption. The advantages of solar air-conditioning can be markedly made use of by the cycle.  相似文献   

13.
S.M. Xu  X.D. Huang 《Solar Energy》2011,85(9):1794-1804
This paper presented a new solar powered absorption refrigeration (SPAR) system with advanced energy storage technology. The advanced energy storage technology referred to the Variable Mass Energy Transformation and Storage (VMETS) technology. The VMETS technology helped to balance the inconsistency between the solar radiation and the air conditioning (AC) load. The aqueous lithium bromide (H2O-LiBr) was used as the working fluid in the system. The energy collected from the solar radiation was first transformed into the chemical potential of the working fluid and stored in the system. Then the chemical potential was transformed into thermal energy by absorption refrigeration when AC was demanded. In the paper, the working principle and the flow of the SPAR system were explained and the dynamic models for numerical simulation were developed. The numerical simulation results can be used to investigate the behavior of the system, including the temperature and concentration of the working fluid, the mass and energy in the storage tanks, the heat loads of heat exchanger devices and so on. An example was given in the paper. In the example, the system was used in a subtropical city like Shanghai in China and its operating conditions were set as a typical summer day: the outdoor temperature varied between 29.5 °C and 38 °C, the maximum AC load was 15.1 kW and the total AC capacity was 166.1 kW h (598.0 MJ). The simulation results indicated that the coefficient of performance (COP) of the system was 0.7525 or 0.7555 when the condenser was cooled by cooling air or by cooling water respectively and the storage density (SD) was about 368.5 MJ/m3. As a result, the required solar collection area was 66 m2 (cooling air) or 62 m2 (cooling water) respectively. The study paves the road for system design and operation control in the future.  相似文献   

14.
Although solar energy is able to power the heat-driven refrigeration, its contribution is quite limited due to the conventional cooling requirement. In building air-conditioning, it is common to supply low temperature chilled water, usually in 5–7 °C. If this temperature can be elevated, it would enhance the effectiveness to harness solar energy and minimize auxiliary heating. Solar refrigeration would then be more effective through high temperature cooling, by providing 15–18 °C chilled water instead. In such provision, radiant ceiling cooling can be coupled to handle the space cooling load, particularly space sensible load. And the space latent load and ventilation load are handled by a separate dehumidification provision, like the heat-driven desiccant dehumidification. Therefore, a solar hybrid air-conditioning system is formulated, using adsorption refrigeration, chilled ceilings and desiccant dehumidification. In this study, the year-round performances of the proposed solar hybrid air-conditioning systems were evaluated for two typical office types. The performance metrics include the solar fraction, coefficient of performance, solar thermal gain, primary energy consumption and indoor conditions. Comparative study was conducted for the hybrid air-conditioning system worked with the three common types of chilled ceilings, namely the chilled panels, passive chilled beams and active chilled beams. The solar hybrid air-conditioning system was also benchmarked with the conventional vapour compression refrigeration for office use. It is found that the proposed solar hybrid air-conditioning system is technically feasible through high temperature cooling. Among the three types of chilled ceilings, the passive chilled beams is the most energy-efficient option to work with the solar adsorption refrigeration for space conditioning in the subtropical city.  相似文献   

15.
Designing a cost-effective phase change thermal storage system involves two challenging aspects: one is to select a suitable storage material and the other is to increase the heat transfer between the storage material and the heat transfer fluid as the performance of the system is limited by the poor thermal conductivity of the latent heat storage material. When used for storing energy in concentrated solar thermal power plants, the solar field operation temperature will determine the PCM melting temperature selection. This paper reviews concentrated solar thermal power plants that are currently operating and under construction. It also reviews phase change materials with melting temperatures above 300 °C, which potentially can be used as energy storage media in these plants. In addition, various techniques employed to enhance the thermal performance of high temperature phase change thermal storage systems have been reviewed and discussed. This review aims to provide the necessary information for further research in the development of cost-effective high temperature phase change thermal storage systems.  相似文献   

16.
Cogeneration has improved sustainability as it can improve the energy utilization efficiency significantly. In this paper, a novel ammonia-water cycle is proposed for the cogeneration of power and refrigeration. In order to meet the different concentration requirements in the cycle heat addition process and the condensation process, a splitting /absorption unit is introduced and integrated with an ammonia–water Rankine cycle and an ammonia refrigeration cycle. This system can be driven by industrial waste heat or a gas turbine flue gas. The cycle performance was evaluated by the exergy efficiency, which is 58% for the base case system (with the turbine inlet parameters of 450 °C/11.1 MPa and the refrigeration temperature below −15 °C). It is found that there are certain split fractions which maximize the exergy efficiency for given basic working fluid concentration. Compared with the conventional separate generation system of power and refrigeration, the cogeneration system has an 18.2% reduction in energy consumption.  相似文献   

17.

A capillary driven ejector refrigerator is a new refrigeration system that can use solar energy and other low-grade heat sources. In this paper, the performance of the refrigeration system is simulated numerically by use of an iteration algorithm and block exchanging technology for all unit models. The flow and heat transfer characteristics in a solar collector, generator, ejector, condenser, and evaporator are analyzed and calculated. The results show that when the generating temperature is higher than 75–80°C and the environmental temperature is lower than 35°C, the system can work normally; the coefficient of performance of this refrigeration system is in the range of 0.05–0.15 by use of water as a refrigerant. The cooling capacity and COP increase with an increasing generative temperature and decreasing condensing pressure.  相似文献   

18.
Solar energy can be used for substitution of the depleting fossil fuels in thermal applications and electricity generation through thermal route. For medium and high temperature applications, solar concentrators are required. Proper sizing and selection of concentrator for any thermal application calls for characterization of the concentrator at the required operating temperature. There are few procedures reported in literature for testing and evaluating solar concentrator performance which are based on sensible heating of the working fluid. One of the limitations of these procedures is requirement of precise operating conditions during testing. A test procedure for characterization of point-focus steam generating solar concentrators based on latent heating at different operating temperatures is proposed. The proposed procedure uses the phase change characteristic of water at constant temperature to measure the thermal performance. This procedure can be used to estimate thermal efficiency of solar concentrator at different operating temperatures above 100 °C. This procedure was used to estimate the efficiency of a point-focus solar concentrator having 25 m2 aperture area at 161 °C (equivalent to 5.4 bar (g)). The efficiency was estimated as 47 ± 3.5%. The test procedure can be used for field evaluation of existing systems also with minimum amount of instrumentation and controls.  相似文献   

19.
A more realistic theoretical simulation model for a tubular solar adsorption refrigerating system using activated carbon-methanol (AC/M) pair has been introduced. The mathematical model represents the heat and mass transfer inside the adsorption bed, the condenser, and the evaporator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. Furthermore, the local pressure, and local thermal conductivity variations in space and time inside the tubular reactor are investigated as well. A C++ computer program is written to solve the proposed numerical model using the finite difference method. The developed program covers the operations of all the system components along the cycle time. The performance of the tubular reactor, the condenser, and the evaporator has been discussed. Time allocation chart and switching operations for the solar refrigeration system processes are illustrated as well. The case studied has a 1 m2 surface area solar flat plate collector integrated with a 20 stainless steel tubes containing the AC/M pair and each tube has a 5 cm outer diameter. In addition, the condenser pressure is set to 54.2 kpa. It has been found that, the solar coefficient of performance and the specific cooling power of the system are 0.211 and 2.326 respectively. In addition, the pressure distribution inside the adsorption bed has been found nearly uniform and varying only with time. Furthermore, the AC/M thermal conductivity is shown to be constant in both space and time.  相似文献   

20.
Using carbon dioxide as working fluid receives increasing interest since the Kyoto Protocol. In this paper, thermodynamic analysis was conducted for proposed CO2‐based Rankine cycle powered by solar energy. It can be used to provide power output, refrigeration and hot water. Carbon dioxide is used as working fluid with supercritical state in solar collector. Theoretical analysis was carried out to investigate performances of the CO2‐based Rankine cycle. The interest was focused on comparison of the performance with that of solar cell and those when using other fluids as working fluids. In addition, the performance and characteristics of the thermodynamic cycle are studied for different seasons. The obtained results show that using CO2 as working fluid in the Rankine cycle owns maximal thermal efficiency when the working temperature is lower than 250.0°C. The power generation efficiency is about 8%, which is comparable with that of solar cells. But in addition to power generation, the CO2‐based solar utilization system can also supply thermal energy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号