首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The effects of Cu and Al addition on the microstructure and fracture in the coarse-grained heat-affected zone (CGHAZ) of high-strength low-alloy steels with superior toughness were studied and compared with the X70 pipeline base steel counterpart. The microstructure in base steel was dominated by a small fraction of acicular ferrite and predominantly bainite. However, acicular ferrite microstructure was obtained in Cu-bearing steel, which nucleated on complex oxide with outer layer of MnS and CuS because of Cu addition. The microstructure in Al-bearing steel consisted of bainite with ultrafine martensite–austenite constituent, which was refined by Al addition. CGHAZ in Cu-bearing and Al-bearing steels had superior impact toughness and ductile fracture, which were attributed to acicular ferrite and ultrafine martensite–austenite constituent, respectively.  相似文献   

2.
用热模拟方法研究了氮含量对钒微合金钢粗晶热影响区(CGHAZ)的组织和性能的影响。结果表明,氮含量为0.0031%或0.021%时,CGHAZ的韧性较差。氮含量0.0031%时CGHAZ中有少量的Ti(C,N),晶界铁素体(GBF)较少,晶内有大量尺寸较大的侧板条铁素体(FSP),解理裂纹沿FSP的直线扩展使其韧性较差。氮含量0.021%时在CGHAZ中生成了较为粗大的(Ti, V)(C, N)和GBF,解理裂纹沿GBF扩展使其韧性较差。氮含量为0.012%时低温韧性较好,在CGHAZ中生成了大量细小的(Ti, V)(C, N)粒子,且GBF尺寸相对较小,晶内有大量的针状铁素体(AF)。这些因素都有利于阻止裂纹扩展,使其低温韧性显著提高。  相似文献   

3.
研究了热输入对06CuNiCrMoNb钢焊接热影响区不同部位组织和性能的影响,重点分析了粗晶区的韧性与组织之间的关系。结果表明,模拟焊接热影响区没有出现"软化"现象,但是当线能量大于30kJ/cm情况下,粗晶区低温韧性迅速下降。对粗晶区的分析显示,线能量17kJ/cm条件下贝氏体铁素体呈细小板条状,在板条间存在着残余奥氏体薄膜,随线能量的增大,块状的铁素体数量增多,并且出现不规则片状M+A组元。  相似文献   

4.
用焊接热模拟方法研究了V-N-Ti和Nb-V-Ti微合金化正火型海工钢模拟粗晶热影响区(CGHAZ)组织和韧性的变化规律。结果表明,组织的不同使V-N-Ti设计正火型海工钢的模拟CGHAZ韧性比Nb-V-Ti钢的好。对于V-N-Ti钢,较高的N含量提高了富Ti(Ti, V)(C, N)粒子析出温度和铁素体形核能力,使模拟CGHAZ原始奥氏体晶粒和(取向差角为15°)晶粒细化,并生成能阻止或使解理裂纹的偏转细小多边形铁素体,因此具有良好的低温韧性。而Nb-V-Ti钢模拟CGHAZ原奥氏体晶界上的链状M-A、粗大的原始奥氏体晶粒和有效晶粒尺寸,是模拟CGHAZ韧性差的原因。  相似文献   

5.
800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding conditions was investigated by thermal simulation. The influence of the cooling time from 800℃ to 500℃.t8/5 (0.3-30 s), on the microstructure of the CGHAZ was discussed. The experimental results indicate that the microstructnre of the CGHAZ is only the granular bainite which consists of bainitic ferrite (BF) lath and M-A constituent while t8/5 is 0.3-30 s. The M-A constituent consists of twinned martensite and residual austenite, and the change of the volume fraction of the residual austenite in the M-A constituent is very small when t8/5 is between 0.3 and 30 s. The morphology of the M-A constituent obviously changes with the variation of t8/5.As t8/5 increases, tile average width, gross and shape parameter of the M-A constituent increase, while the line density of the M-A constituent decreases.  相似文献   

6.
使用高温激光共聚焦扫描显微镜原位观察了含0.016%(质量分数,下同)的La和不含La的低合金高强钢模拟焊接热影响区中高温阶段奥氏体的长大和组织转变行为,并使用光学显微镜和电子扫描显微镜对比分析了添加0.016%的La对粗晶热影响区晶粒细化的影响.结果 表明:添加0.016%的La使低合金高强钢中的夹杂物由Al-Mg-...  相似文献   

7.
Coarsening, embrittlement and corrosion sensitization in high temperature heat-affected zone (HTHAZ) are the major problems when low carbon 12% chromium stainless steel is being welded, which induce deterioration of the impact toughness at low temperature and intergranular corrosion resistance. This study investigated the corresponding microstructures in HTHAZ with different chemical compositions and heat inputs through thermal simulation tests. There are several primary conclusions: (1) When ferrite factor (FF) is above 9.0, the microstructure in HTHAZ is fully ferrite or a small amount of martensite net likely distributing along delta ferrite grain boundaries. On the other hand, if FF is below 9.0, the martensite content increases with the decreasing of FF. (2) Heat input influences the microstructure of high FF steel in HTHAZ. The martensite content and its distribution of low FF steel are not sensitive to heat inputs, but the grain size grows up with the increase of heat inputs. (3) The coarse Ti-rich particles in low FF steels containing Ti can promote intragranular austenite formation inside delta ferrite resulting in packet morphology of martensite. On the other hand, martensite of low FF steels only stabilized with Nb is characterized by grain boundary allotriomorphs, Widmanstätten structures and secondary sawteeth. This martensite reticularly distributes along ferrite grain boundaries.  相似文献   

8.
The microstructure of acicular ferrite and its formation for the grain refinement of coarse-grained region of heat-affected zone of high strength low-alloy bainite steels were studied using three-dimensional reconstruction technique. Crystallographic grain size was analyzed by means of electron backscatter diffraction. It was revealed that the microstructure in the coarse-grained region of the heat-affected zone consisted of predominantly bainite packets and a small proportion of acicular ferrite. Acicular ferrite was of lath or plate-like rather than needle or rod-like morphology. Tempering of the coarse-grained region of heat-affected zone showed that the acicular ferrite was more stable than the bainite, indicating that the acicular ferrite was formed prior to bainite. The acicular ferrite laths or plates divided the prior austenite grains into smaller and separate regions, and confining the bainite transformed at lower temperatures in the smaller regions and hence leading to the grain refinement in the coarse-grained region of the heat-affected zone.  相似文献   

9.
Abstract

Different microstructures having acicular ferrite as the major phase but with various types and amounts of microphases were obtained by applying different cooling processes to C–Mn steels containing fine non-metallic inclusions. Optical and electron microscopy were carried out to identify the various microphases in the acicular ferrite microstructure, and their mechanical properties were measured and compared to study the effect of the microphases on the microstructure–properties relationship in C–Mn wrought steels. The existence and increase of the fraction of small isolated martensite between the acicular ferrite laths were found to play an important role in determining the tensile strength and low temperature impact toughness of the steels. However, the elongation and room temperature impact toughness were rather insensitive to the microphases. This may be attributed to the uniform distribution and isolation of relatively small martensite due to the fine interlocking character of the acicular ferrite microstructure.  相似文献   

10.
采用热模拟技术研究了12CrNi5MoV锻钢焊接热影响区粗晶区的组织与性能。结果表明,经历一次焊接热循环后,材料粗晶区的抗拉强度与原始态试样相比显著升高,而冲击韧性明显降低;冷却过程中冷却速度加快引起材料组织中孪晶马氏体与残余奥氏体含量的增加是其粗晶区力学性能变化的主要原因。  相似文献   

11.
为制定合理的焊接工艺,保证焊接质量,设置不同焊接热输入进行了10CrNi3MoV钢MAG焊接。采用微观组织分析、断口观察、力学测试等手段研究了焊接热输入对接头组织及性能的影响。结果表明,热输入较小时(E=11.0 kJ·cm-1E=14.4 kJ·cm-1),焊缝组织以针状铁素体为主,并含有部分粒状贝氏体、先共析铁素体等;热输入较大时(E=18.1 kJ·cm-1),针状铁素体占比降低,粒状贝氏体、先共析铁素体等增多,组织粗化。随热输入的增大,粗晶区晶粒粗化,组织由板条马氏体逐步转变为板条贝氏体,板条界限模糊,并有粒状贝氏体出现;焊缝金属强度降低,冲击韧性先略有升高后显著降低,断裂形式由微孔聚缩型韧断变为准解理/韧性混合断裂。热输入E=14.4 kJ·cm-1时,焊缝组织以细密的针状铁素体为主,具有最佳强韧性匹配。  相似文献   

12.
The microstructural evolution and precipitation behaviour of Nb-V-Mo and single V containing transformation-induced plasticity-assisted steels with an acicular/bainitic ferrite matrix were investigated by a heat treatment up to the austenite formation range. It was found that during the heating stage the acicular/bainitic ferrite matrix resisted recrystallisation, while cementite and martensite were decomposed and austenite was formed in the acicular/bainitic ferrite. Both Nb-V-Mo and V containing steels after the heat treatment showed a microstructure consisting of a polygonal ferrite matrix with small islands of pearlite. During these transformations, the microscopy observations showed that 0.04 wt% Nb and 0.08 wt% Mo additions to the 0.16 wt% V microalloyed steel considerably reduced the growth-coarsening of microalloy precipitates.  相似文献   

13.
为综合研究X90管线钢的焊接性,选用国内某钢厂轧制的X90管线钢卷板,利用预精焊工艺制备试验钢管4根,采用金相分析、扫描电镜(SEM)断口分析、夏比V型缺口冲击试验、拉伸、弯曲、硬度等试验,研究了焊接接头各个区域的组织和性能.试验结果表明:内外焊缝区组织均为针状铁素体,热影响区(HAZ)粗晶区晶粒粗化严重,主要组织为粒状贝氏体和贝氏体铁素体,在原奥氏体晶界和贝氏体板条内部存在块状或条状的(马氏体-奥氏体)M-A组元;HAZ冲击功离散性较大,出现了单值较低(45 J)的试样,SEM断口分析呈现典型的解理断裂特征;焊接接头抗拉强度805~815 MPa,断裂位置均在HAZ;焊接接头反弯试样易在HAZ出现裂纹和脆断现象;HAZ硬度在220~250 HV之间,较母材下降30 HV左右.HAZ是X90预精焊钢管焊接接头的薄弱环节,为提高X90管线钢的焊接稳定性,应重点研究精焊内外热循环双热影响亚区的组织转变和脆化机理.  相似文献   

14.
TiOx steels with superior toughness of the heat-affected zone (HAZ) and applicable to a wide range of welding heat inputs have been developed using advance metallurgical techniques. A promising practice in industrial production is adopting a Ti-killing process in which ferro-titanium alloys are utilized as killing agents in an Al-free molten steel. This process creates Ti-oxides with various crystalline structures (referred to as TiOx) in a steel matrix. These TiOxinclusions improve the toughness of coarse-grained HAZ by promoting the formation of intragranular acicular ferrite (IAF), which can section an austenite grain into several colonies and refine the effective grain size to fracture resistance. The volume fraction of IAF is closely related to the number of TiOx inclusions, inclusion diameter, austenite grain size and the hardenability of steels. The favourable conditions for the formation of IAF and the concept of process control are discussed.  相似文献   

15.
The microstructures and mechanical properties of coarse grain heat-affected zone (CGHAZ) of domestic X70 pipeline were investigated. The weld CGHAZ thermal cycles having different cooling time Δt 8/5 were simulated with the Gleeble-1500 thermal/mechanical simulator. The Charpy impact absorbed energy for toughness was measured, and the corresponding fractographs, optical micrographs, and electron micrographs were systematically investigated to study the effect of cooling time on microstructure, impact toughness, and fracture morphology in the CGHAZ of domestic X70 pipeline steel during in-service welding. The results of simulated experiment show that the microstructure of CGHAZ of domestic X70 pipeline steel during in-service welding mainly consists of granular bainite and lath bainite. Martensite–austenite (M–A) constituents are observed at the lath boundaries. With increase in cooling time, the M–A constituents change from elongated shape to massive shape. The reduction of toughness may be affected by not only the M–A constituents but also the coarse bainite sheaves. Accelerating cooling with cooling time Δt 8/5 of 8 s can be chosen in the field in-service welding X70 pipeline to control microstructures and improve toughness.  相似文献   

16.
Abstract

A systematic microstructural characterization in the heat-affected zone (HAZ) of two ASTM A710 grade A steel weldments (one preheated and the other pre–cooled), employing identical shielded metal arc welding conditions, has been performed. The microstructure in both the HAZ and the weld metal of both welds has been characterized by optical, scanning, and transmission electron microscopy in conjunction with microhardness traverses. No difference in microstructure was observed in the HAZ on comparing the preheated and non-preheated weldments. The only significant difference observed in the two weldments was the width of the HAZ, which is about 1 mm wider for a preheated weldment. Examination by transmission electron microscopy revealed the following microconstituents in the HAZ of both the weldments: polygonal ferrite, acicular ferrite, ferrite–carbide aggregates, ε-copper and fine cementite precipitates, martensite, tempered martensite, retained austenite, and transformation-twinned martensite. The microhardness traverse revealed almost identical hardness gradients in the two welds. The microstructural and microhardness data are discussed with regard to the preheating requirements for this alloy.

MST/118  相似文献   

17.
In order to find an alternative choice for structural load-bearing components, an effort was made to improve the impact toughness of medium Mn steel through inter-critical annealing treatment without significant reduction in strength. Besides, the relative effect of C and Mn contents on microstructure and mechanical properties of medium Mn steels was also studied. Fibrous microstructures with fine, alternate films of ferrite and martensite with retained austenite were obtained. The low-C, high-Mn steel showed a superior combination of yield strength, ductility and impact toughness due to finer microstructure and higher retained austenite fraction, as compared to high-C, low-Mn steel. Thus, the beneficial effect of Mn enrichment in stabilising retained austenite and improving mechanical properties by transformation induced plasticity effect becomes evident.  相似文献   

18.
管线用超低碳钢中针状铁素体的形成及强韧化行为   总被引:2,自引:0,他引:2  
通过对一种管线用超低碳钢的变形奥氏体相变工艺的分析,提出了能够获得针状铁素体为主的组织的控制热加工工艺(TMCP)制度,研究了针状铁素体的结构特征和力学特性,结果表明,与管线用中,低碳钢相比较,实验用钢尽管具有很低的碳含量(0.025%),但在当前优化的TMCP工艺下能够获得优良的力学性能,即具有相当的强度和高的冲击韧性,针状铁素体的结构特征提高了材料的力学性能。值得注意的是,在当前肝硬化的TMCP工艺下,针状铁素体晶界上存在一层薄膜,这层薄膜对管线用超低碳钢的强韧性具有重要的作用。  相似文献   

19.
Abstract

Inclusion assisted microstructure control has been a key technology to improve the toughness of C–Mn and low alloy steel welds over the last two to three decades. The microstructure of weld metals and heat affected zones (HAZs) is known to be refined by different inclusions, which may act as nucleation sites for intragranular acicular ferrite and/or to pin austenite grains thereby preventing grain growth. In the present paper, the nature of acicular ferrite and the kinetics of intragranular ferrite transformations in both weld metals and the HAZ of steels are rationalised along with nucleation mechanisms. Acicular ferrite development is considered in terms of competitive nucleation and growth reactions at austenite grain boundary and intragranular inclusion nucleation sites. It is shown that compared to weld metals, it is difficult to shift the balance of ferrite nucleation from the austenite grain boundaries to the intragranular regions in the HAZ of particle dispersed steels because inclusion densities are lower and the surface area available for ferrite nucleation at the austenite grain boundaries tends to be greater than that of intragranular inclusions. The most consistent explanation of high nucleation potency in weld metals is provided by lattice matching between ferrite and the inclusion surface to reduce the interfacial energy opposing nucleation. In contrast, an increase in the thermodynamic driving force for nucleation through manganese depletion of the austenite matrix local to the inclusion tends to be the dominant nucleation mechanism in HAZs. It is demonstrated that these means of nucleation are not mutually exclusive but depend on the nature of the nucleating phase and the prevailing transformation conditions. Issues for further improvement of weldment toughness are discussed. It is argued that greater numbers of fine particles of a type that preferentially nucleate acicular ferrite are required in particle dispersed steels to oppose the austenite grain boundary ferrite transformation and promote high volume fractions of acicular ferrite and thereby toughness.  相似文献   

20.
采用焊接热模拟的方法,研究了氮含量对实验钢焊接粗晶热影响区(CGHAZ)显微组织和韧性的影响规律。结果表明:随着氮含量的增加,CGHAZ的组织从晶界铁素体、贝氏体和侧板条铁素体转变成针状铁素体、多边形铁素体和少量的贝氏体,且铁素体晶粒细化;CGHAZ韧脆转变温度(FATT50)先降低后升高,屈服强度升高。氮含量从0.004 4%增加到0.009 4%时,有效晶粒尺寸减小,导致CGHAZ的FATT50降低;氮含量从0.009 4%增加到0.019 0%时,CGHAZ中固溶氮、屈服强度增量对FATT50的综合作用大于晶粒的细化作用,导致FATT50升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号