首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Racemic heavy isotope analogs of 1-O-alkyl-sn-glycero-3-phosphocholine (lysoPAF) and 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (PAF) were prepared for use as internal standards to facilitate quantitative studies based on mass spectrometry. Starting from pentadencane-1,15-diol andrac-glycerol-1,2-acetonide, a convergent synthesis of 1-O-[16′-2H3]hexadecyl and 1-O-[18′-2H3]octadecylrac-glycero-3-phosphocholine and their acetyl derivatives is described. Three deuterium atoms were introduced at the terminal position of the 1-O-alkyl group by displacement of thep-toluensulfonyl group from 1-O-alkyl-15′-p-toluensulfonate and 1-O-alkyl-17′-p-toluensulfonate with [2H3]-methylmagnesium iodide. The 1-O-alkyl-17′-p-toluensulfonate was obtained by reaction of the 1-O-alkyl-15′-p-toluensulfonate with allylmagnesium bromide, followed by reductive ozonolysis and treatment withp-toluenesulfonyl chloride. The hydroxyl group at C-2 was protected by a benzyl group and removed at a late stage in the synthesis. This provided the corresponding lysoderivatives or allowed preparation of racemic PAF by subsequent acetylation of the free hydroxy group. The phosphocholine moiety was introduced at glycerol C-3 by reaction with bromoethyldichlorophosphate and trimethylamine. The synthetic compounds were analyzed by FAB/MS and GC/NICIMS. They were shown to contain less than 0.6% protium impurity.  相似文献   

2.
In mammalian systems, platelet-activating factor, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, (PAF) is rapidly inactivated by a deacetylation/reacylation system that produces 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine which is highly enriched in arachidonic acid. There is some evidence that n−3 fatty acids may have an impact on this system in humans but the nature of this impact is unclear. In rainbow trout, n−3 fatty acids are known to be essential dietary components which are derived through the food chain. Substantial quantities of n−3 fatty acids are found in trout membrane phospholipids. We show here that in sharp contrast to mammalian cells, trout cells acylate lyso platelet-activating factor, alkyl-GPC, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine, (lyso-PAF) with a high degree of specificity for n−3 fatty acids. When [3H]lysoPAF was incubated with these cells, only three molecular species of alkylacylglycerophosphocholine were produced, and 92% contained n−3 fatty acids. Since isolated membranes yielded similar results, it appears that the acylation proceedsvia a coenzyme A-independent transacylase as found in mammalian systems.  相似文献   

3.
Plant cells in culture are capable of incorporating exogenous 1-O-alkyl-sn-glycerols into various neutral and ionic ether lipids. 1-O-Alkyl-2-acyl-sn-glycerol-3-phosphocholines, the major class of compounds thus formed, are used for the preparation of platelet activating factor (PAF) in high yields. Similarly, the prochiral 2-O-alkyl-sn-glycerols are transformed to chiral 2-O-alkyl glycerophospholipids from which compounds can be obtained that exhibit antiviral activity in plant and animal cells. Reaction of 1-O-alkyl-2-acyl-sn-glycerol-3-phosphocholines with phospholipase D in the presence of ethanolamine leads to 1-O-alkyl-2-acyl-sn-glycerol-3-phosphoethanolamines, which serve as starting material, for the preparation of 1-O-alkyl-2-acyl-sn-glycero-3-phospho-(N-acyl)ethanolamines, compounds known to have antitumor activity. Based on a paper presented at the Third International Conference on Platelet-Activating Factor and Structurally Related Alkyl Ether Lipids, Tokyo, Japan, May 1989. Dedicated to Professor Morris Kates, Ottawa, on the occasion of his retirement.  相似文献   

4.
1-O-Octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3) is an ether-linked lipid that exhibits selective cytotoxicity toward several types of tumor cells and is relatively inactive toward normal cells under the same conditions of treatment. The mechanism of this selective cytotoxicity is unknown. We conducted studies to determine whether this compound is metabolized by phospholipases C and D and, if so, whether sensitive and resistant cells differ in their ability to degrade ET-18-OCH3 by these enzymes. We have examined the metabolism of the L-isomer of ET-18-OCH3, 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine (L-ET-18-OCH3), by lysophospholipase D of rat liver microsomes and by a phospholipase D from the marine bacteriumVibrio damsela. The metabolism of L-ET-18-OCH3 was also examined in cell culture using Madin-Darby canine kidney cells, human promyelocytic leukemia cells and human myelocytic leukemia cells. In these studies, L-ET-18-OCH3 and related 1-O-alkyl-linked phosphocholine analogs radiolabeled with3H in the 1-O-alkyl chain were used. L-ET-18-OCH3 was not hydrolyzed by lysophospholipase D from rat liver microsomes under conditions where cleavage of 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine was observed. However, phospholipase D from the marine bacteriumV. damsela readily hydrolyzed L-ET-18-OCH3 to 1-O-[3H]octadecyl-2-O-methyl-sn-glycero-3-phosphate, demonstrating that L-ET-18-OCH3 can be degraded by a phospholipase D. Platelet-activating factor (PAF) and lyso-PAF were also substrates for the bacterial phospholipase D. When intact cells were incubated with radiolabeled L-ET-18-OCH3 a product was formed that was identified as 1-O-[3H]octadecyl-2-O-methyl-sn-glycerol. There are two mechanisms that could account for the appearance of this product. The first involves cleavage of the compound by a phospholipase C, resulting in direct release of the diglyceride. The second possible mechanism involves cleavage by a phospholipase D to form the phosphatidic acid analog with subsequent hydrolysis to the diglyceride by a phosphohydrolase. Preliminary data support the phospholipase C-type mechanism. Regardless of which mechanism operates in intact cells, the metabolic degradation of L-ET-18-OCH3 does not appear to be a significant factor in the selective cytotoxicity of this antitumor agent.  相似文献   

5.
Summary Polymerizable glycerophosphocholines containing one or two 2,4-hexadienyloxy groups at the terminal of the acyl chains were prepared. Those were 1-[11-(2,4-hexadienyloxy)undecanoyl]-2-0-alkyl-rac-glycero-3-phosphocholines 1, 1-acyl-2-[11-(2,4-hexadienyloxy)undecanoyl]-sn-glycero-3-phosphocholines 2 and 1,2-bis[11-(2,4-hexadienyloxy)undecanoyl]-sn-glycero-3-phosphocholine 3. Those having one hexadienyloxy group formed small unilamellar vesicles. One having two groups formed lipid bilayers, but not unilamellar vesicles. 1 and 2 could form stable microcapsules (polymerized vesicles) with the diameters ranging from 20 to 40 nm.  相似文献   

6.
In this study, the 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine content of human platelets was determined. The distribution of arachidonate among the 1,2-diacyl, 1-O-alkyl-2-acyl, and 1-O-alk-l′-enyl-2-acyl classes of choline- and ethanolamine-containing phosphoglycerides was also assessed. The major platelet phospholipids were choline-containing phosphoglycerides (38%), ethanolamine-containing phosphoglycerides (25%) and sphingomyelin (18%), with smaller amounts of phosphatidylserine (11%) and phosphatidylinositol (4%). In addition to the diacyl class, the choline-linked fraction was found to contain both 1-O-alkyl-2-acyl (10%) and 1-O-alk-l′-enyl-2-acyl (9%) species. The ethanolamine-linked fraction, on the other hand, had an elevated level of the 1-O-alk-l′-enyl-2-acyl (60%) species and a small amount of the 1-O-alkyl-2-acyl component (4%). The major fatty acyl residues found in all classes of the choline and ethanolamine phospholipids were 16∶0, 18∶0, (Δ9), 18∶2(n−6) and 20∶4(n−6). The 1-O-alk-l and 1-O-alk-l′-enyl fraction of the ethanolamine-linked phospholipids also contained substantial amounts of 22∶4(n−6), 22∶5(n−3) and 22∶6(n−3) acyl chains. Arachidonate comprised 44% of the acyl residues in thesn-2 position of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine. Corresponding values for the diacyl and 1-O-alk-l′-enyl-2-acyl species were 23% and 25%, respectively, based on all 20∶4(n−6) being linked to thesn-2 position of all classes. In the ethanolamine-linked phosphoglycerides, arachidonate constituted 60%, 20% and 68% of the acyl groups in thesn-2 position of the 1,2-diacyl, 1-O-alkyl-2-acyl and 1-O-alk-l′-enyl-2-acyl classes, respectively. The content of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine appears sufficient to support the synthesis of platelet activating factor by a deacylation-reacylation pathway in platelets. Our findings also demonstrate that human platelets contain a significant amount of 1-O-alkyl-2-arachidonyl-sn-glycero-3-phosphocholine that could possibly serve as a precursor of both platelet activating factor and bioactive arachidonate metabolites.  相似文献   

7.
The activity of the platelet-activating factor (PAF)-synthesizing enzyme, 1-O-alkyl-sn-glycero-3-phosphocholine (lysoPAF):acetyl-CoA acetyltransferase (EC 2.3.1.67) in alveolar macrophage lysate was found to be elevated after warming the cells to 37°C. Such an increase in enzyme activity was detectable only when intact cells were warmed. The stimulation was transient, reaching a peak at 2 min, and then gradually decreased to the control level. We could not find increased PAF formation in warmed cells which had increased acetyltransferase activity, even though substantial amounts of lysoPAF were shown to be present within cells. In contrast, considerable amounts of PAF were formed after treatments of the cells with exogenous lysoPAF. These results suggest that the activation of acetyltransferase is not sufficient to induce PAF formation and that the increased availability of substrates, especially lysoPAF, in the cells is indispensable for triggering PAF biosynthesis in this type of cells.  相似文献   

8.
This study was undertaken to determine if rabbit neutrophils contain sufficient ether-linked precursor for the synthesis of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activatin factor) by a deacylation-reacylation pathway. The phospholipids from rabbit peritoneal polymorphonuclear neutrophils were purified and quantitated, and the choline-containing and ethanolamine-containing phosphoglycerides were analyzed for ether lipid content. Choline-containing phosphoglycerides (37%), ethanolamine-containing phosphoglycerides (30%), and sphingomyelin (28%) were the predominant phospholipid classes, with smaller amounts of phosphatidylserine (5%) and phosphatidylinositol (<1%). The choline-linked fraction contained high amounts of 1-O-alkyl-2-acyl-(46%) and 1,2-diacyl-sn-glycero-3-phosphocholine (54%), with a trace of the 1-O-alk-1′-enyl-2-acyl species. The ethanolamine-linked fraction contained high amounts of 1-O-alk-1′-enyl-2-acyl-(63%) and 1,2-diacyl-sn-glycero-3-phosphoethanolamine (34%), and a low quantity of the 1-O-alkyl-2-acyl species (3%). The predominant 1-O-alkyl ether chains found in thesn-1 position of the choline-linked fraction were 16∶0 (35%), 18∶0 (14%), 18∶1 (26%), 20∶0 (16%), and 22∶0 (9%). The major 1-O-alk-1′-enyl ether chains found in thesn-1 position of the ethanolamine-linked fraction were 14∶0 (13%), 16∶0 (44%), 18∶0 (27%), 18∶1 (12%) and 18∶2 (3%). The major acyl groups in thesn-1 position of 1,2-diacyl-sn-glycero-3-phosphocholine and 1,2-diacyl-sn-glycero-3-phosphoethanolamine were 16∶0, 18∶0 and 18∶1. The most abundant acyl group in thesn-2 position of all classes of choline- and ethanolamine-linked phosphoglycerides was 18⩺2. Although this work does not define the biosynthetic pathway for platelet activating factor, it does show that there is ample precursor present to support its synthesis by a deacylation-reacylation pathway.  相似文献   

9.
Jen-sie Tou  Sean Healey 《Lipids》1991,26(4):327-330
The present study was undertaken to test the hypothesis that leukotriene B4 (LTB4) may promote extracellular fatty acid incorporation into neutrophil choline glycerophospholipids (PC) to replenish phospholipids after deacylation. Incubation of human neutrophils with LTB4 (1.5 to 150 nM) for 1 for 5 min resulted in increased fatty acid incorporation into phosphatidylinositol (PI), diacyl-sn-glycero-3-phosphocholine (diacyl-GPC) and alkylacyl-GPC. The magnitude of stimulation (percentage of control) of fatty acid incorporation appears to reflect increased activity of the acyltransferases catalyzing acylation of the respective lysophospholipids. LTB4 stimulation of arachidonic acid incorporation into PI was greater than into PC, whereas the stimulation of palmitic acid but not by arachidonic acid. LTB4 and 1-O-alkyl-2-N-methylcarbamyl-sn-glycero-3-phosphocholine (cPAF) exhibited a similar stimulatory effect on fatty acid incorporation into the PC fraction. Phosphate analysis could not detect changes in the mass of PI or of PC in neutrophils exposed to LTB4 or cPAF. The results suggest that increased fatty acid incorporation into phospholipids in LTB4-activated neutrophils reflects activation of phospholipase A2 and acyltransferases as well as ofde novo phospholipid synthesis.  相似文献   

10.
The existence of ether-linked phospholipids, including 1-O-alk-1′-enyl-2-acyl and 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholines and ethanolamines in bonitoEuthynnus pelamis (Linnaeus) white muscle, was investigated by gas chromatography and gas chromatography-mass spectrometry. Chemical ionization (iso-butane) mass spectrometry of trimethylsilyl ethers derived from the corresponding ether-linked glycerophospholipids proved effective not only for determining molecular weights but also for structural identification based on the ions [M−R]+, [M−RO]+ and [M+1]+. 1-O-Alk-1′-enyl-2-acyl-sn-glycero-3-phosphocholine and ethanolamine accounted for 3.0–6.0% and 3.6–7.6% of the total glycerophospholipids, respectively. 1-O-Alkyl-2-acyl-sn-glycero-3-phosphocholine and ethanolamine were also determined for one fish and accounted for 1.4% and 0.6% of the total glycerophospholipids, respectively. The predominant long chains in thesn-1 position of the glycerol moieties were 16∶0, 18∶0 and 18∶1 in the case of the alkenylacyl and alkylacyl components. Fatty acid distribution of individual glycerophospholipids was also determined.  相似文献   

11.
Vitamin E deficiency was found to stimulate FMLP (N-formyl-L-methionyl-L-leucyl-L-phenylalanine)-induced biosynthesis of PAF (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in polymorphonuclear leucocytes (PMN) from rat peritoneum. In three separate experiments each, the amounts of PAF synthesized during 6min and 12 min incubation of PMN cells from control, vitamin E-supplemented, and vitamin E-deficient rats were 129–240, 131–227 and 248–354 pmol/106 cells, respectively. The activity of the acetyl-transferase, which transfers the acetyl moiety of [3H]acetyl-CoA to 2-lysoPAF (1-O-alkyl-sn-glycero-3-phosphocholine) to form [3H]PAF, was higher in PMN homogenates from vitamin E-deficient rats (2.28±0.07 nmol/min/mg protein) than in those from E-supplemented rats (1.06±0.10 nmol/min/mg protein). However, there was no difference between the two groups in the activity of acetylhydrolase (4.26±0.71 and 4.26±0.06 nmol/min/mg protein, respectively), measured as degradation of [3H]PAF to [3H]lysoPAF.In vitro addition of α-tocopherol did not inhibit the increased activity of acetyl-transferase in vitamin E-deficient rats, in-dicating that the enzyme in vitamin E-supplemented rats was not directly inhibited by α-tocopherol. The acetyltransferases of the two groups showed similar Km values for acetyl-CoA, but different Vmax values (225 μM and 6.4 nmol/min/mg protein in vitamin E-deficient rats, and 216 μM and 3.6 nmol/min/mg protein in vitamin E-supplemented rats), suggesting that the enzyme was not activated but increased in amount in vitamin E deficiency.  相似文献   

12.
The importance of the steric configuration of lysophosphatidylcholine in the lymphatic transport of fat was investigated in bile fistula rats. It was found that the feeding of 1-palmitoyl-sn-glycero-3-phosphocholine increased the lymphatic output of phosphatidyl choline and triacylglycerol, while the feeding of 3-palmitoyl-sn-glycero-1-phosphocholine had no effect. In intestinal microsomes of the bile fistula rats, it was found that the lysophosphatidylcholine acyltransferase was stereospecific in acylating the 1-acyl-sn-glycero-3-phosphocholine enantiomer. The significance of these findings is briefly discussed.  相似文献   

13.
In vivo intestinal perfusion was used to follow the absorption of three different choline glycerophospholipids (CGP) in guinea pig. These included 1-[3H]palmitoyl-2-acyl-sn-glycero-3-phosphocholine (diacyl-GPC), 1-[3H]-O-hexadecyl-2-acyl-sn-glycero-3-phosphocholine (alkylacyl-GPC) and 1,2-di-O-hexadecyl-sn-glycero-3-phospho-[3H]-choline (dialkyl-GPC). About 80% of diacyl-GPC was absorbed within 4 hr, compared to 60% of alkylacyl-GPC and 30% of dialkyl-GPC. The radioactivity disappearing from the perfusion fluid was recovered in intestinal lipids, mostly triacylglycerol, free fatty acid and CGP from diacyl-GPC, CGP from alkylacyl-GPC and dialkyl-GPC. These results indicated that the nonhydrolyzable substrate dialkyl-GPC was much less absorbed, whereas diacyl-GPC, which released over 80% of [3H]palmitic acid in the perfusion fluid, displayed the highest absorption rate. The intermediate picture observed for alkylacyl-GPC suggested the possible involvement of a phospholipase A2, which was detected in the entire intestinal tract. This enzyme was further found to concentrate in villus cells, where it is localized in the brush border membrane, as shown using two different subcellular fractionation procedures. These data suggest a possible role of this new enzyme in the digestion of alimentary phospholipids.  相似文献   

14.
Sato R  Itabashi Y  Fujishima H  Okuyama H  Kuksis A 《Lipids》2004,39(10):1025-1030
A simple method for synthesizing diastereomerically pure phosphatidylglycerols (PtdGro), namely, 1,2-diacyl-sn-glycero-3-phospho-3′-sn-glycerol (R,R configuration) and 1,2-diacyl-sn-glycero-3-phospho-1′-sn-glycerol (R,S configuration) was established. For this purpose, diastereomeric 1,2-O-isopropylidene PtdGro were prepared from 1,2-diacyl-sn-glycero-3-phosphocholine (PtdCho) and enantiomeric 1,2-O-isopropylideneglycerols by transphosphatidylation with phospholipase D (PLD) from Actinomadura sp. This species was selected because of its higher transphosphatidylation activity and lower phosphatidic acid (PtdOH) formation than PLD from some Streptomyces species tested. The reaction proceeded well, giving almost no hydrolysis of PtdCho to PtdOH in a biphasic system consisting of diethyl ether and acetate buffer at 30°C. The isopropylidene protective group was removed by heating the diastereomeric isopropylidene PtdGro at 100°C in trimethyl borate in the presence of boric acid to obtain the desired PtdGro diastereomers. The purities of the products, which were determined by chiral-phase HPLC, were exclusively dependent on the optical purities of the original isopropylideneglycerols used. The present method is simple and can be utilized for the synthesis of pure PtdGro diastereomers having saturated and unsaturated acyl chains.  相似文献   

15.
Suresh K. Bhatia  Joseph Hajdu 《Lipids》1991,26(12):1424-1430
A novel stereospecific synthesis of antitumor active thioether analogs of platelet-activating factor (PAF) is reported. The synthesis is based upon: i) the use ofD-serine to provide the chiral center for the construction of the optically active phospholipid molecule; ii) development of thesn-1-thioalkyl function via thioacetate displacement of methanesulfonate-activated primary hydroxyl group followed by alkylation of thesn-1-thiolate function; and iii) introduction of the phosphocholine moiety through the 2-chloro-2-oxo-1,3,2-dioxaphospholane/trimethylamine sequence. The entire scheme relies on the use of a single protecting group. The synthetic thioether phospholipid 1-S-hexadecyl-2-N-acetamidodeoxy-sn-glycero-3-phosphocholine has been shown to be a potent antitumor active phospholipid, exhibiting tumor cytotoxicity against a lymphoblastoid lymphoma (Li-A) cell line and a malignant histiocytic (DHL-4) cell line of human origin at the same level of potency as ET-18-OMe and 1-O-octadecyl-2-N-acetamidodeoxy-sn-glycero-3-phosphocholine. The synthetic method described has a great deal of flexibility, providing a convenient general route to a wide range of thioether PAF analogs. Based on a paper presented at the Third International Conference on Platelet-Activating Factor and Structurally Related Alkyl Ether Lipids, Tokyo, Japan, May 1989.  相似文献   

16.
This study examines the feasibility that peroxidation and lipolysis of 1-O-alkyl-2,3-diacyl-sn-glycerols (DAGE) found in shark liver oil and human milk fat constitutes a potential source of dietary precursors of platelet activating factor (PAF) mimics and of gamma-hydroxybutyrate (GHB). Purified DAGE were converted into 1-O-alkyl-2-acyl-sn-glycerols by pancreatic lipase, without isomerization, and transformed into 1-O-alkyl-2-oxoacyl-sn-glycerols by mild autooxidation. The various core aldehydes without derivatization, as well as the corresponding dinitrophenylhydrazones, were characterized by chromatographic retention time and diagnostic ions by online electrospray mass spectrometry. Core aldehydes of oxidized shark liver oil yielded 23 molecular species of 1-O-alkyl-sn-glycerols with short-chain sn-2 oxoacyl groups, ranging from 4 to 13 carbons, some unsaturated. Autooxidation of human milk fat yielded 1-O-octadecyl-2-(9-oxo)nonanoyl-sn-glycerol, as the major core aldehyde. Because diradylglycerols with short fatty chains are absorbed in the intestine and react with cytidine diphosphate-choline in the enterocytes, it is concluded that formation of such PAF mimics as 1-O-alkyl-2-(ω-oxo)acyl-sn-glycerophosphocholine from unsaturated dietary DAGE is a realistic possibility. Likewise, a C4 core alcohol produced by aldol-keto reduction of a C4 core aldehyde constitutes a dietary precursor of the neuromodulator and recreational drug GHB, which has not been previously pointed out.  相似文献   

17.
Wang XH  Ushio H  Ohshima T 《Lipids》2003,38(1):65-72
The differences in distribution of geometric isomers of unsaturated PC hydroperoxides generated by free radical oxidation were compared, as corresponding hydroxy analogs, in heterogeneous liposomes and in a homogeneous methanol solution by using HPLC with UV detection due to the presence of conjugated dienes. Identification of fractionated peak components was carried out by GC-MS. When the oxidation of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine, PC(16∶0/18∶2), was initiated in liposomes by a hydrophilic azo radical initiator, and in a methanol solution by a hydrophobic azo radical initiator, there was no significant difference in the relative percentages of 1-palmitoyl-2-(9-hydroxy-trans-10,trans-12-octadecadienoyl)-sn-glycero-3-phosphocholine (9-t,t-OH PC) and 1-palmitoyl-2-(13-hydroxy-trans-9,trans-11-octadecadienoyl)-sn-glycero-3-phosphocholine (13-t,t-OH PC) between the PC oxidized in liposomes and in the methanol solution. For the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, PC(16∶0/20∶4), the relative percentage of 1-palmitoyl-2-(5-hydroxy-trans-6,cis-8,11,14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (5-OH PC) was significantly higher (P<0.01) than that of 1-palmitoyl-2-(15-hydroxy-cis-5,8,11,trans-13-eicosatetraenoyl)-sn-glycero-3-phosphocholine (15-OH PC) in liposomes. For the homogeneous methanol solution of PC(16∶0/20∶4), the relative percentage of 5-OH PC was close to that of 15-OH PC. For the PC(16∶0/20∶4) oxidized in bulk with added pentamethylchromanol, the individual amount of 15-OH PC, 1-palmitoyl-2-(11-hydroxy-cis-5,8trans-12,cis-14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (11-OH PC), 1-palmitoyl-2-(12-hydroxy-cis-5,8,trans-10,cis-14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (12-OH PC), 1-palmitoyl-2-(8-hydroxy-cis-5,trans-9,cis-11,14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (8-OH PC), 1-palmitoyl-2-(9-hydroxy-cis-5,trans-7,cis-11,14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (9-OH PC), and 5-OH PC were close to each other compared to the corresponding values in liposomes and in methanol solution. The results obtained by gel permeation chromatography of the PC liposomes containing hydrophilic 2,2′-azobis-2-amidinopropane) dihydrochloride (AAPH) suggest that the AAPH added to the liposomes of PC(16∶0/20∶4) was partitioned into the water phase and out of the hydrophobic region of the fatty acyl moieties of the PC. These results confirm that the distance that exists in the bis-allylic carbons of the unsaturated fatty acyl moieties of PC from the interface between the hydrophilic region of PC and the water phases played an important role in influencing hydrogen abstraction to form a symmetrical distribution of hydroperoxide isomers in both the heterogeneous liposomes and the homogeneous methanol solution.  相似文献   

18.
Synthetic alkyl lysophospholipids (ALP) show antineoplastic activity. In the present discussion, the cytotoxicity of ALP is attributed to their accumulation in tumor cells. Some neoplastic cell species, in contrast to normal cells, cannot metabolize ALP because of a lack ofO-alkylglycerol monooxygenase (AGMO) activity. To understand the metabolic fate of ether lipids and etherlinked phospholipids, AGMO substrate specificity studies were undertaken. Thirty-five different natural and synthetic ether lipids and their metabolites (including a thioether) were tested as substrates for AGMO. The study revealed that the potent cytostatic substance, 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine is not a substrate for AGMO. Therefore, its selective toxicity to tumor cells cannot be based on the differences in direct detoxification of 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine by AGMO in normal and malignant cells. However, 1-O-octadeyl-2-O-methyl-rac-glycerol, which can be formed by phospholipase C hydrolysis, is a good substrate for AGMO.  相似文献   

19.
Addition of platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) to leukocyte-rich plasma from several species resulted in the rapid and pronounced activation of the PAF biosynthetic enzyme acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (EC 2.3.1.67). Activation of acetyltransferase by PAF occurred in leukocyte-rich plasma from human, chimpanzee, rhesus monkey, and dog. The neutrophil was indicated to be the major cellular source of the activabable acetyltransferase in leukocyte-rich plasma. The induction of acetyltransferase was substantial with 10 nM PAF, and maximal at 10–30 seconds. Measurable acetyltransferase activation was significantly greater when the PAF-activated cells were separated from the plasma by centrifugation before the acetyltransferase assay. This may be due in part to the removal of the PAF-specific acetylhydrolase present in plasma which can cleave the acetyl group from PAF. Measuring PAF activation of acetyltransferase in leukocyte-rich plasma can be useful to determine the potency of PAF antagonists with neutrophils in plasma compared to isolated neutrophils in aqueous buffer, and as anex vivo assay to determine the efficacy and plasma concentration equivalents of antagonists administered to whole animals. The PAF antagonist L-659,989 was shown to be 3–5 times more potent in inhibiting PAF induction of acetyltransferase in isolated human neutrophils than in human leukocyte-rich plasma, with IC50 values of 10 nM and 40 nM, respectively. In theex vivo assay, oral administration of the PAF antagonist L-667, 131 to dogs resulted in very substantial inhibition of PAF induction of acetyltransferase in the leukocyte-rich plasma. Utilizing theex vivo assay, oral administration of 1 mg/kg L-659,989 to rats was found to result in plasma concentration equivalents of approximately 200–300 nM L-659,989. Our findings offer a new approach for charagerizing thein vitro andin vivo efficacy of PAF receptor antagonists and demonstrate that PAF may be able to activate neutrophils in the bloodin vivo, further enhancing PAF synthesis. Based on a paper presented at the Third International Conference on Platelet-Activating Factor and Structurally Related Alkyl Ether Lipids, Tokyo, Japan, May 1989.  相似文献   

20.
Using the spectrofluorimetric method described by Wittenaueret al. [Wittenauer, L.A., Shirai, K., Jackson, R.L., and Johnson, J.D. (1984)Biochem. Biophys. Res. Commun. 118, 894–901] for phospholipase A2 (PLA2) measurement, we have detected a phospholipase activity in Ailsa Craig and in mutantrin tomatoes at their normal harvest time (mature green stage). This activity in Ailsa Craig tomatoes increased at the beginning of fruit ripening (green-orange stage) and then decreased slowly. The decrease in activity, however, was greater when ripening occurred after tomato picking at normal harvest time than when ripening occurred on tomato plants. This phospholipase activity was always higher inrin tomatoes than in normal ones. Thin-layer chromatography of compounds obtained after incubation of tomato extract demonstrated a decrease in the substrate 1-acyl-2-{6[(7-nitro-2,1,3, benzoxadiazol-4-yl)amino]-caproyl}-sn-glycero-3-phosphocholine (C6-NBD-PC), and an increase in one product (NBD-aminohexanoic acid), but failed to detect the second product (1-acyl-sn-glycero-3-phosphocholine). We, therefore, developed a new one-step method for separation and quantification of a mixture of phospholipids and other lipids, using straight-phase-high-performance liquid chromatography with light-scattering detection. This method detected another fatty acid-releasing activity in enzyme extract from green-orange tomatoes. This lipolytic enzyme (or family of enzymes) slowly produced free fatty acids when 1-oleoyl-sn-glycero-3-phosphocholine was added as substrate. The production of fatty acids was stoichiometric and more rapid when 1-oleoyl-sn-glycero-3-phosphate and 1-oleoyl-sn-glycerol were used as substrates. On the other hand, the same tomato extract was unable to hydrolyze 1,2-dioleoyl-sn-glycero-3-phosphate and 1,2-dioleoyl-sn-glycerol. Crude tomato extract exhibited lipid acyl hydrolase activity according to the definition of Galliard [Galliard, T. (1979), inAdvances in the Biochemistry and Physiology of Plant Lipids (Appelqvist, L.A., and Liljenberg, C. eds.), pp. 121–132, Elsevier, Amsterdam]. But in order to demonstrate whether tomato extract contains PLA2 activity and/or lysophospholipase activity, further work on purified tomato extract will be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号