首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To investigate the biological functions of phytochromes in monocots, we generated, by electric discharge particle bombardment, transgenic rice (Oryza sativa cv Gulfmont) that constitutively expresses the oat phytochrome A apoprotein. The introduced 124-kD polypeptide bound chromophore and assembled into a red- and far-red-light-photoreversible chromoprotein with absorbance spectra indistinguishable from those of phytochrome purified from etiolated oats. Transgenic lines expressed up to 3 and 4 times more spectrophotometrically detectable phytochrome than wild-type plants in etiolated and green seedlings, respectively. Upon photo-conversion to the far-red-absorbing form of phytochrome, oat phytochrome A was degraded in etiolated seedlings with kinetics similar to those of endogenous rice phytochromes (half-life approximately 20 min). Although plants overexpressing phytochrome A were phenotypically indistinguishable from wild-type plants when grown under high-fluence white light, they were more sensitive as etiolated seedlings to light pulses that established very low phytochrome equilibria. This indicates that the introduced oat phytochrome A was biologically active. Thus, rice ectopically expressing PHY genes may offer a useful model to help understand the physiological functions of the various phytochrome isoforms in monocotyledonous plants.  相似文献   

3.
The red/far-red reversible phytochromes play a central role in regulating the development of plants in relation to their light environment. Studies on the roles of different members of the phytochrome family have mainly focused on light-labile, phytochrome A and light-stable, phytochrome B. Although these two phytochromes often regulate identical responses, they appear to have discrete photosensory functions. Thus, phytochrome A predominantly mediates responses to prolonged far-red light, as well as acting in a non-red/far-red-reversible manner in controlling responses to light pulses. In contrast, phytochrome B mediates responses to prolonged red light and acts photoreversibly under light-pulse conditions. However, it has been reported that rice (Oryza sativa L.) phytochrome A operates in a classical red/far-red reversible fashion following its expression in transgenic tobacco plants. Thus, it was of interest to determine whether transgenic rice phytochrome A could substitute for loss of phytochrome B in phyB mutants of Arabidopsis thaliana (L.) Heynh. We have observed that ectopic expression of rice phytochrome A can correct the reduced sensitivity of phyB hypocotyls to red light and restore their response to end-of-day far-red treatments. The latter is widely regarded as a hallmark of phytochrome B action. However, although transgenic rice phytochrome A can correct other aspects of elongation growth in the phyB mutant it does not restore other responses to end-of-day far-red treatments nor does it restore responses to low red:far-red ratio. Furthermore, transgenic rice phytochrome A does not correct the early-flowering phenotype of phyB seedlings.  相似文献   

4.
Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl- and K+. The postshrinking volume recovery is achieved by K+ and Cl- influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B.  相似文献   

5.
6.
Repetitive isometric tetanic contractions (1/s) of the canine gastrocnemius-plantaris muscle were studied either at optimal length (Lo) or short length (Ls; approximately 0.9 . Lo), to determine the effects of initial length on mechanical and metabolic performance in situ. Respective averages of mechanical and metabolic variables were (Lo vs. Ls, all P < 0.05) passive tension (preload) = 55 vs. 6 g/g, maximal active tetanic tension (Po) = 544 vs. 174 (0.38 . Po) g/g, maximal blood flow (Q) = 2.0 vs. 1.4 ml . min-1 . g-1, and maximal oxygen uptake (VO2) = 12 vs. 9 micromol . min-1 . g-1. Tension at Lo decreased to 0.64 . Po over 20 min of repetitive contractions, demonstrating fatigue; there were no significant changes in tension at Ls. In separate muscles contracting at Lo, Q was set to that measured at Ls (1.1 ml . min-1 . g-1), resulting in decreased VO2 (7 micromol . min-1 . g-1), and rapid fatigue, to 0.44 . Po. These data demonstrate that 1) muscles at Lo have higher Q and VO2 values than those at Ls; 2) fatigue occurs at Lo with high VO2, adjusting metabolic demand (tension output) to match supply; and 3) the lack of fatigue at Ls with lower tension, Q, and VO2 suggests adequate matching of metabolic demand, set low by short muscle length, with supply optimized by low preload. These differences in tension and VO2 between Lo and Ls groups indicate that muscles contracting isometrically at initial lengths shorter than Lo are working under submaximal conditions.  相似文献   

7.
8.
9.
10.
1. We used intracellular recording techniques to examine the role of a novel type of protraction phase interneuron, the lateral N1 (N1L) in the feeding system of the snail Lymnaea stagnalis. 2. The N1Ls are a bilaterally symmetrical pair of electrotonically coupled interneurons located in the buccal ganglia. Each N1L sends a single axon to the contralateral buccal ganglia. Their neurite processes are confined to the buccal neuropile. 3. In the isolated CNS, depolarization of an N1L is capable of driving a full (N1-->N2-->N3), fast (1 cycle every 5 s) fictive feeding rhythm. This was unlike the previously described N1 medial (N1M) central pattern generator (CPG) interneurons that were only capable of driving a slow, irregular rhythm. Attempts to control the frequency of the fictive feeding rhythm by injecting varying amounts of steady current into the N1Ls were unsuccessful. This contrasts with a modulatory neuron, the slow oscillator (SO), that has very similar firing patterns to the N1Ls, but where the frequency of the rhythm depends on the level of injected current. 4. The N1Ls' ability to drive a fictive feeding rhythm in the isolated preparation was due to their strong, monosynaptic excitatory chemical connection with the N1M CPG interneurons. Bursts of spikes in the N1Ls generated summating excitatory postsynaptic potentials (EPSPs) in the N1Ms to drive them to firing. The SO excited the N1M cells in a similar way, but the EPSPs are strongly facilitatory, unlike the N1L-->N1M connection. 5. Fast (1 cycle every 5 s) fictive feeding rhythms driven by the N1L occurred in the absence of spike activity in the SO modulatory neuron. In contrast, the N1L was usually active in SO-driven rhythms. 6. The ability of the SO to drive the N1L was due to strong electrotonic coupling, SO-->N1L. The weaker coupling in the opposite direction, N1L-->SO, did not allow the N1L to drive the SO. 7. Experiments on semintact lip-brain preparations allowed fictive feeding to be evoked by application of 0.1 M sucrose to the lips (mimicking the normal sensory input) rather than by injection of depolarizing current. Rhythmic bursting, characteristic of fictive feeding, began in both the SO and N1L at exactly the same time, indicating that these two cell types are activated in "parallel" to drive the feeding rhythm. 8. The N1L is also part of the CPG network. It Excited the N2s and inhibited the N3 phasic (N3p) and N3 tonic (N3t) CPG interneurons like the N1Ms.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
This study tested the effects of light schedules on performance and yields of broiler chickens. In Experiment 1, light treatments during Days 1 to 49 of age were: 1) 23 h light (L):1 h dark (D); 2) 16L:8D;3) 16L: 3D:1L:4D; and 4) 16L:2D:1L:2D:1L:2D. In Experiment 2, Light Treatments 1 and 2 were the same as Treatments 1 and 4, respectively, in Experiment 1; 3) 23L:1D Days 1 to 7, 16L:8D Days 8 to 14, the light period was increased by 2 h/wk during Days 15 to 35, and 23L:1D Days 36 to 42; and 4) 23L:1D Days 1 to 7, 16L:8D Days 8 to 14, 16L:3D: 2L:3D Days 15 to 21, 16L:2D:4L:2D Days 22 to 28, 16L: 1D:6L:1D Days 29 to 35, and 23L:1D thereafter. In Experiment 1, BW was greater in Treatment 4 than Treatment 2 at 22 (708 vs 642 g) and 49 d (2,948 vs 2,797 g), percentage leg problems was lower in Treatments 2 to 4 (9, 10 and 6%, respectively) than in Treatment 1 (20%), and percentage Grade A was greater in Treatment 4 than Treatment 2 (60 vs 46%) at 49 d. In Experiment 2, BW was greater in Treatment 1 (692 g) than Treatments 3 (617 g) and 4 (620 g) at 21 d, and the incidence of tibial dyschondroplasia was lower in Treatment 2 (3.1%) than Treatment 3 (15.3%) at 42 d. There were no differences for mortality among treatments in either experiment.  相似文献   

12.
Plants have at least two major photosensory receptors: phytochrome (absorbing primarily red/far-red light) and cryptochrome (absorbing blue/UV-A light); considerable physiological and genetic evidence suggests some form of communication or functional dependence between the receptors. Here, we demonstrate in vitro, using purified recombinant photoreceptors, that Arabidopsis CRY1 and CRY2 (cryptochrome) are substrates for phosphorylation by a phytochrome A-associated kinase activity. Several mutations within the CRY1 C terminus lead to reduced phosphorylation by phytochrome preparations in vitro. Yeast two-hybrid interaction studies using expressed C-terminal fragments of CRY1 and phytochrome A from Arabidopsis confirm a direct physical interaction between both photoreceptors. In vivo labeling studies and specific mutant alleles of CRY1, which interfere with the function of phytochrome, suggest the possible relevance of these findings in vivo.  相似文献   

13.
We previously reported that overexpression of the rice homeobox gene OSH1 led to altered morphology and hormone levels in transgenic tobacco (Nicotiana tabacum L.) plants. Among the hormones whose levels were changed, GA1 was dramatically reduced. Here we report the results of our analysis on the regulatory mechanism(s) of OSH1 on GA metabolism. GA53 and GA20, precursors of GA1, were applied separately to transgenic tobacco plants exhibiting severely changed morphology due to overexpression of OSH1. Only treatment with the end product of GA 20-oxidase, GA20, resulted in a striking promotion of stem elongation in transgenic tobacco plants. The internal GA1 and GA20 contents in OSH1-transformed tobacco were dramatically reduced compared with those of wild-type plants, whereas the level of GA19, a mid-product of GA 20-oxidase, was 25% of the wild-type level. We have isolated a cDNA encoding a putative tobacco GA 20-oxidase, which is mainly expressed in vegetative stem tissue. RNA-blot analysis revealed that GA 20-oxidase gene expression was suppressed in stem tissue of OSH1-transformed tobacco plants. Based on these results, we conclude that overexpression of OSH1 causes a reduction of the level of GA1 by suppressing GA 20-oxidase expression.  相似文献   

14.
A series of experiments investigated the effects of wavelength and intensity of light in initiation of body fattening (gain in body weight) and gonadal growth in migratory blackheaded bunting under complete and skeleton photoperiods. Using fluorescent light at an intensity approximately 700 lx, the first experiment compared the inductiveness of a complete (13 h continuous light coupled with 11 h darkness; 13L:11D) and a skeleton (two light pulses of 6 and 1 h at 6 h apart; 6L:6D:1L:11D) photoperiod. Observations at the beginning and after 3, 8, 10, and 13 weeks of the treatment indicated that both photoperiods were fully inductive but that birds under 13L photoperiod fattened and lost body weight significantly earlier than birds under skeleton photoperiod. In the second experiment, bunting were subjected to 13L:11D (L = 100 lx; D = 0 lx) of white, green (528 nm), and red (654 nm) light for a period of 5 weeks. Birds gained weight and testes grew in all groups except for an inconsistent fattening response in the white light group. The third experiment tested if the inductive effects of 1-h light pulse in a skeleton photoperiod were intensity dependent. Groups of bunting were exposed to 6L:6D:1L:11D (intensity of 1-h white light pulse = 2, 10, 50, or 100 lux) and examined at the beginning and after 3 and 8 weeks of the treatment. Photoinduction occurred at a slower rate and only at 50- and 100-lx intensities. The fourth experiment was similar to the third in design but it employed 1-h light pulse of two different wavelengths (green = 528 nm, and red = 654 nm) at 50- and 100-lx intensities. Birds fattened and testes grew only under red light. The last experiment varied the wavelength and intensity of the first (6 h) light pulse of the skeleton photoperiod (6L:6D:1L:11D): 6-h entraining light pulse of white, green (528 nm), or red (654 nm) colour at 10- or 50-lx intensity was used with 1-h inducing light pulse of white light at approximately 700-lx intensity. Testes grew in all groups but significant fattening occurred only in birds entrained to 50-lx light intensity. These results indicate i) the dissociation of body weight and gonadal responses, in the sense that the timing of photostimulation and/or magnitude of photoperiod-induced body weight and testicular responses differed under various photoperiodic manipulations, and ii) the circadian processes involved in photoperiod-induced responses have differential spectral and intensity sensitivity.  相似文献   

15.
16.
The expression of critical size of ferromagnetic microcrystal in an external magnetic field with an intensity of H is derived by means of comparing energies of domain structure states.The ferromagnetic microcrystal here means an ferromagnetic single crystal with the size which is smaller than L0, and L0 is the critical value of the size of single-domain particles at the external magnetic field intensity H =0.Also, the coercive strength H(Ls) relating to the size of microcrystal Ls is given and quantitatively evaluated with the material SmCo5 as an instance.It is thus concluded that if L0 > Ls > LC, the antimagnetization of microcrystal will be subjected to a multi-domain process just like the particles of a size greater than L0, only if Ls < LC, the anti-magnetizaton will be carried on in accordance with the Stoner-Wohlforth mechanism( LC is the maximum size of microcrystal with MHcth ).It is suggested that the material RECo5 is available to make an advanced magnet with MHC = 2 K/Mc.  相似文献   

17.
Circadian clocks are synchronized by environmental cues such as light. Photoreceptor-deficient Arabidopsis thaliana mutants were used to measure the effect of light fluence rate on circadian period in plants. Phytochrome B is the primary high-intensity red light photoreceptor for circadian control, and phytochrome A acts under low-intensity red light. Cryptochrome 1 and phytochrome A both act to transmit low-fluence blue light to the clock. Cryptochrome 1 mediates high-intensity blue light signals for period length control. The presence of cryptochromes in both plants and animals suggests that circadian input pathways have been conserved throughout evolution.  相似文献   

18.
Five experiments were conducted to determine whether primitive perceptual features, or textons, which B. Julesz (1984) identified in studies of texture segregation with adults, also affect object recognition early in development. Three-month-old infants discriminated Ts and Ls composed of overlapping line segments from +s but not from each other in a delayed-recognition test after 24 hrs; however, Ts and Ls were discriminated from each other after only 1 hr. In a priming paradigm, Ts, Ls, and +s were discriminated from one another after 2 wks. In succeeding experiments, infants exhibited adultlike visual pop-out effects in both delayed recognition and priming paradigms, detecting an L in the midst of 6 +s and vice versa; these effects were symmetrical. The pop-out effects apparently resulted from parallel search: Infants failed to detect 3 Ls among 4 +s. Clearly, some of the same primitive units that have been identified as the building blocks of adult visual perception underlie object recognition early in infancy. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Blue light responses in higher plants can be mediated not only by specific blue light receptors, but also by the red/far-red photoreversible phytochrome system. The question of interdependence between these photoreceptors has been debated over many years. The availability of Arabidopsis mutants for the blue light receptor CRY1 and for the two major phytochromes phyA and phyB allows a reinvestigation of this question. The analysis of photocontrol of seed germination, inhibition of hypocotyl growth and anthocyanin accumulation clearly demonstrates that (i) phyA shows a strong control in blue light responses especially at low fluence rates; (ii) phyB mediated induction reactions can be reversed by subsequent blue light irradiations; and (iii) CRY1 mediates blue light controlled inhibition of hypocotyl growth only at fluence rates higher than 5 mumol m-2s-1 and independently of phytochrome A and B.  相似文献   

20.
A monoclonal antibody designated Mep-1 was raised against phytochrome A from pea (Pisum sativum L.). The binding of this antibody (class IgG1) to partially degraded phytochrome (114 kDa) caused a considerable increase in the far-red peak at the red-light-induced stationary state. The effect reached a plateau value when the antibody and phytochrome were present in approximately equimolar amounts. The dark transformation of the far-red-light-absorbing form to the red-light-absorbing form of the 114 kDa phytochrome was inhibited by the addition of the antibody. However, binding of the antibody to the undegraded 121 kDa phytochrome had no effects on the spectrum of the red-light-induced steady state. The site at which the antibody bound to phytochrome was determined to be between amino acid residues 256 and 383 of pea phytochrome A. This is the first report of a monoclonal antibody that enhances the far-red absorption of phytochrome in the red-light-induced photostationary state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号