共查询到19条相似文献,搜索用时 78 毫秒
1.
针对玻璃纤维增强塑料(GFRP)筋与珊瑚混凝土间的黏结行为研究较少,进而影响到相关结构计算及性能分析等问题,开展了GFRP筋与珊瑚混凝土黏结性能的拉拔试验研究,分析了GFRP筋与珊瑚混凝土黏结破坏的受力过程和黏结-滑移曲线特征,以及相对保护层厚度、黏结长度和珊瑚混凝土材料特性等因素对GFRP筋与珊瑚混凝土黏结强度的影响.结果表明:GFRP筋与珊瑚混凝土的黏结强度能够满足一般工程需要,GFRP筋与珊瑚混凝土黏结破坏的受力过程、黏结-滑移曲线特征、黏结机理、破坏形态与GFRP筋-普通混凝土的黏结行为较为接近;各影响因素中,黏结长度、相对保护层厚度、GFRP筋直径及表面状况对GFRP筋与珊瑚混凝土黏结强度及破坏形态影响较大. 相似文献
2.
GFRP/钢绞线复合筋与混凝土之间的黏结锚固是GFRP/钢绞线复合筋增强混凝土结构性能的关键问题.采用拉拔试验,参照ACI规范的试验方法,对180个混凝土拉拔试件进行试验研究,测定每个试件的黏结强度、加载端滑移及自由端滑移,并计算GFRP/钢绞线复合筋的黏结一滑移关系曲线.基于肋间距、筋直径、埋置长度、混凝土强度、混凝土保护层厚度和浇筑深度等因素对黏结锚固性能的影响,通过对试验数据的统计分析,得到GFRP/钢绞线复合筋的混凝土保护层修正系数、混凝土浇筑深度修正系数及黏结滑移限值,提出GFRP/钢绞线复合筋的黏结强度计算公式和基本锚固长度的计算公式,并确定锚固长度的计算原则.试验数据及设计建议可为确定GFRP/钢绞线复合筋的混凝土保护层厚度、构建GFRP,钢绞线复合筋的黏结一滑移本构关系模型以及制定相关规范提供参考和依据. 相似文献
3.
对某支座负筋保护层厚度过大的楼板进行了现场荷载试验,对变形、裂缝宽度进行了测量,并与规范允许值进行对比分析,验证了该楼板能否满足正常使用性能,从而确保了该楼板的安全性。 相似文献
4.
混凝土保护层厚度关系到结构的承载力、耐久性、防火等性能,《混凝土结构工程施工质量验收规范》(GB 50204-2002)规定,结构实体检验应包括钢筋保护层厚度。通过对KON-RBL混凝土保护层厚度测定仪的使用性能及精度进行试验分析,得出回归方程,并进行了工程验证。 相似文献
5.
通过建立的玻璃纤维增强塑料筋灌浆锚固件的粘接应力理论分析模型,给出了粘接应力和滑移量的理论解;并通过数学分析模拟,给出了粘接应力的分布曲线;通过试验研究,确定了不同直径的玻璃纤维增强塑料筋的基本锚固长度。 相似文献
6.
高性能的GFRP杆体是提高GFRP锚杆高性能的关键,GFRP杆体的力学性能指标是指导锚杆设计施工的重要参数。本文通过GFRP筋进行基本力学性能试验,测定了GFRP筋的极限抗拉强度、弹性模量、延伸率、应力-应变关系以及筋的抗剪强度,证实了GFRP筋可以代替钢筋应用在岩土锚固工程中。 相似文献
8.
王君菊 《混凝土与水泥制品》2022,(2):38-40+81
为满足轨道交通工程地下联络通道的盾构施工要求,生产了钢-玻璃纤维筋混凝土复合管片,介绍了其结构特点,并从混凝土配合比、玻璃纤维筋的加工定位、混凝土浇筑等方面介绍了管片的生产工艺。此外,通过三环拼装试验验证了成型管片符合相关精度要求。 相似文献
9.
钢筋交叉的混凝土保护层问题常影响到工程质量。为妥善解决,应注意以下几个方面:保护层厚度不能等同于保护层最小厚度;单(双)向板肋梁楼盖上部梁筋、双向板上下受力筋等均有两种保护层厚度;多梁交会处上下梁筋保护层应加大等。 相似文献
10.
为模拟GFRP锚杆在实际工况下GFRP筋与灰浆介质的粘结锚固性状,本文制作GFRP筋灌浆锚固件模型,并对灌浆锚固件模型进行拔出荷载试验,对GFRP筋与水泥灰浆间的粘结性能进行了试验研究。 相似文献
11.
采用Canadian Standards Association(CSA)标准规定的拉拔试验方法,考虑GFRP筋的种类、组分、直径、表面处理方法、肋间距、肋高度、肋宽度等因素,对GFRP筋与混凝土之间的粘结强度进行了试验研究。研究结果表明:试件的粘结破坏有筋表面变形的剪切、变形的脱落和肋间混凝土被剪碎三种形式;GFRP筋与混凝土的粘结强度低于钢筋与混凝土的粘结强度,大约为钢筋与混凝土粘结强度的65%~87%;GFRP筋的种类、直径、表面处理方法、肋高度、肋间距和肋宽度等因素对粘结强度的影响显著,但GFRP筋组分的影响不大;当肋间距为GFRP筋直径、肋高度为GFRP筋直径的6%时,GFRP筋与混凝土的粘结强度最高。 相似文献
12.
钢纤维混凝土具有良好的开裂后拉伸性能和韧性,已被广泛用于工程结构的修复加固中。对于所修复的锈蚀构件,钢纤维混凝土与锈蚀钢筋的黏结性能是影响其力学性能的关键因素。首先通过电化学方法对钢筋进行预锈蚀,进而采用清理干净的预锈蚀钢筋制作拉拔试件,然后通过中心拉拔试验研究锈蚀钢筋与钢纤维混凝土的黏结性能。试验结果表明:钢纤维的掺入能够使试件从劈裂破坏转变为拔出破坏,同时黏结强度比提高4.4%~7.5%;随着黏结长度的减小,加载端与自由端的相对滑移也逐渐减小,而峰值黏结应力对应的平均滑移却逐渐增大;锈蚀率对黏结强度的影响与黏结长度相关,与未锈蚀试件相比,当锈蚀率达到约15%时,黏结长度为3d(d为钢筋直径)试件的黏结强度减小21%,而黏结长度为7d试件的黏结强度基本不变。基于试验结果,建立了以锈蚀率和黏结长度为参数的黏结强度经验公式,计算结果与试验结果吻合较好。 相似文献
13.
芳纶纤维塑料筋混凝土的粘结性能试验研究 总被引:4,自引:0,他引:4
通过27个拉拔试件和16个梁式试件的试验结果,分析了芳纶纤维塑料筋的粘结锚固性能和破坏模式,较为系统地探讨了混凝土强度、埋长、直径、箍筋配置等因素对粘结强度的影响。 相似文献
14.
为研究超高性能混凝土(UHPC)与高强钢筋的黏结性能,设计并制作69个试件,通过拔出试验研究UHPC强度、纤维体积率、纤维尺寸形状、保护层厚度、黏结长度、加载方式和黏结段位置对黏结性能的影响。结果表明:试件的主要破坏形态包括拔出破坏、钢筋拉断和劈裂破坏,高强钢筋与UHPC界面的黏结强度随UHPC抗压强度、纤维体积率和长径比以及保护层厚度的增加而增大;纤维的掺入对高强钢筋与UHPC黏结强度提高作用明显;当纤维体积率从1%增长至3%,长径比从35增加到100时,黏结强度分别提高了23%和16%;但纤维形状的变化对黏结强度没有明显影响;黏结强度随着UHPC抗压强度和保护层厚度的增大而显著增加,随着黏结长度增大而降低,当保护层厚度超过4倍钢筋直径时,增幅基本不变;当黏结段位于加载端时,受拉拔出加载试件黏结强度仅为受压加载的77%,黏结段越靠近试件中部,加载方式对黏结强度影响越小。基于试验结果,确定临界锚固长度计算式,提出高强钢筋与UHPC的黏结强度计算式,同时建立黏结应力-滑移本构关系模型。通过试验结果及公式计算结果对比可得,现有的普通混凝土黏结强度公式低估了高强钢筋与UHPC的黏结强度,建议的简化公式预测结果与试验结果吻合良好。 相似文献
15.
为研究超高性能混凝土(UHPC)与高强钢筋的黏结性能,设计并制作69个试件,通过拔出试验研究UHPC强度、纤维体积率、纤维尺寸形状、保护层厚度、黏结长度、加载方式和黏结段位置对黏结性能的影响。结果表明:试件的主要破坏形态包括拔出破坏、钢筋拉断和劈裂破坏,高强钢筋与UHPC界面的黏结强度随UHPC抗压强度、纤维体积率和长径比以及保护层厚度的增加而增大;纤维的掺入对高强钢筋与UHPC黏结强度提高作用明显;当纤维体积率从1%增长至3%,长径比从35增加到100时,黏结强度分别提高了23%和16%;但纤维形状的变化对黏结强度没有明显影响;黏结强度随着UHPC抗压强度和保护层厚度的增大而显著增加,随着黏结长度增大而降低,当保护层厚度超过4倍钢筋直径时,增幅基本不变;当黏结段位于加载端时,受拉拔出加载试件黏结强度仅为受压加载的77%,黏结段越靠近试件中部,加载方式对黏结强度影响越小。基于试验结果,确定临界锚固长度计算式,提出高强钢筋与UHPC的黏结强度计算式,同时建立黏结应力-滑移本构关系模型。通过试验结果及公式计算结果对比可得,现有的普通混凝土黏结强度公式低估了高强钢筋与UHPC的黏结强度,建议的简化公式预测结果与试验结果吻合良好。 相似文献
16.
参照ACI 440.3R-04提供的试验方法,将90根玻璃纤维增强塑料(GFRP)筋分别放入40℃、60℃和80℃的模拟混凝土溶液中进行加速老化试验,侵蚀时间分别为3.65 d、18.0 d、36.5 d、92.0 d和183.0 d,分析了温度、侵蚀时间、SiO2含量等参数对GFRP筋受压力学性能的影响。研究表明:侵蚀183.0 d后,40℃、60℃、80℃模拟混凝土环境下的GFRP筋抗压强度较侵蚀前分别下降了29.59%、39.12%和47.62%,其抗压弹性模量分别下降了10.12%、12.47%和19.06%。采用扫描电子显微镜(SEM)对侵蚀前后GFRP筋的微观形貌进行了观测,发现侵蚀后GFRP筋的劣化区域内纤维与周围树脂之间出现了明显的脱粘现象,而且随着温度的提高这种脱黏现象更加明显。采用X射线荧光光谱分析仪(XRF)分析了侵蚀前后GFRP筋的SiO2含量变化,结果表明随着侵蚀时间的增加,模拟混凝土环境下GFRP筋中SiO2含量呈递减趋势;侵蚀前GFRP筋中SiO2含量为62.11%,在40℃、60℃和80℃模拟混凝土环境下侵蚀183.0 d后,GFRP筋中SiO2含量较侵蚀前分别下降到52.05%、50.66%和47.65%。基于XRF分析提出了模拟混凝土环境下GFRP筋抗压强度的预测模型。 相似文献
17.
为研究分散型钢混凝土组合柱(ISRCC)的抗震性能,分析组合柱中分散布置的型钢和混凝土之间的协同工作情况,对4个ISRCC柱进行偏心率为10%和15%的低周往复加载试验。与传统低周往复加载试验相比,试验中按预定路径同时施加竖向荷载和水平荷载。分析了ISRCC柱在低周往复荷载作用下的承载力、延性、破坏形态、裂缝分布和刚度退化等。试验结果表明:所有ISRCC柱均为小偏心压弯破坏,试件整体性较好;在偏心率15%以内,屈服荷载前各试件满足平截面假定,能够有效发挥型钢和混凝土的组合作用;ISRCC柱压弯承载力的试验值与ACI 318-2014、EN 1994-1-1和YB 9082-2006《钢骨混凝土结构技术规程》等规范中的承载力计算结果吻合较好,验证了现有规范中普通钢骨混凝土(SRC)柱压弯承载力的计算方法对偏心率15%以内的ISRCC柱的适用性;试件的极限位移角为1/88~1/65,满足我国规范对罕遇地震作用下框架-核心筒结构弹塑性层间位移角的要求,具有较好的变形能力。 相似文献
18.
在介绍混凝土碳化机理的基础上,通过开展混凝土快速碳化试验并建立其与自然碳化的关系,定量给出了基于耐久性设计的合理保护层厚度。 相似文献
19.
从钢筋粘结锚固要求、混凝土和钢筋的耐久性两方面分析了混凝土保护层厚度的确定因素及取值原理,指出只有在保证混凝土质量的前提下,才能考虑合理改变保护层的厚度。 相似文献