首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents state-of-the-art results on 1-GHz surface transverse wave (STW) oscillators running at extremely high loop power levels. The high-Q single-mode STW resonators used in these designs have an insertion loss of 3.6 dB, an unloaded Q of 8000, a residual PM noise of -142 dBc/Hz at a 1-Hz carrier offset, and operate at an incident power of up to +31 dBm in the loop. Other low-Q STW resonators and coupled resonator filters (CRF), with insertion losses in the 5-9 dB range, can conveniently handle power levels in excess of two Watts. These devices were incorporated into voltage controlled oscillators (VCO's) running from a 9.6-V dc source and provide an RF output power of +23 dBm at an RF/dc efficiency of 28%. Their tuning range was 750 kHz and the PM noise floor was -180 dBc/Hz. The oscillators, stabilized with the high-Q devices and using specially designed AB-class power amplifiers, delivered an output power of +29 dBm and exhibited a PM noise floor of -184 dBc/Hz and a 1-Hz phase noise level of -17 dBc/Hz. The 1-Hz phase noise level was improved to -33 dBc/Hz using a commercially available loop amplifier. In this case, the output power was +22 dBm. In all cases studied, the loop amplifier was found to be the factor limiting the close-to-carrier oscillator phase noise performance  相似文献   

2.
The design and performance of voltage controlled surface transverse wave oscillators (VCSTWO) in the lower gigahertz frequency range, operating on supply and tuning voltages in the 1.2 to 3.3 V range, and suitable for direct interfacing with the next generation CMOS circuits are presented. By applying the "boost" principle, as used in direct current (DC)-DC converters, to the design of the sustaining amplifier, the VCSTWO outputs are switched between 0 V and a positive peak value, exceeding the supply voltage Us, to provide safe CMOS-circuit switching while keeping the radio frequency (RF)/DC efficiency to a maximum for low DC power consumption. The investigated 1.0 and 2.5 GHz VCSTWO are varactor tuned feedback-loop oscillators stabilized with two-port surface transverse wave (STW) resonators. Each VCSTWO has a DC-coupled, high-impedance switched output to drive the CMOS circuit directly, and an additional sinusoidal 50 ohmz high-power reference output available for other low-noise system applications. Phase noise levels in the -103 to -115 dBc/Hz range at 1 kHz carrier offset are achieved with 1.0 GHz VCSTWO at a RF/DC efficiency in the 21 to 29% range. The 2.5 GHz prototypes demonstrate phase noise levels in the -97 to -102 dBc/Hz range at 1 kHz carrier offset, and efficiencies range between 8 and 15%.  相似文献   

3.
This practically oriented paper presents the fundamentals for analysis, optimization, and design of negative resistance oscillators (NRO) stabilized with surface transverse wave (STW)-based single-port resonators (SPR). Data on a variety of high-Q, low-loss SPR devices in the 900- to 2000-MHz range, suitable for NRO applications, are presented, and a simple method for SPR parameter extraction through Pi-circuit measurements is outlined. Negative resistance analysis, based on S-parameter data of the active device, is performed on a tuned-base, grounded collector transistor NRO, known for its good stability and tuning at microwave frequencies. By adding a SPR in the emitter network, the static transducer capacitance is absorbed by the circuit and is used to generate negative resistance only over the narrow bandwidth of the acoustic device, eliminating the risk of spurious oscillations. The analysis allows exact prediction of the oscillation frequency, tuning range, loaded Q, and excess gain. Simulation and experimental data on a 915-MHz fixed-frequency NRO and a wide tuning range, voltage-controlled STW oscillator, built and tested experimentally, are presented. Practical design aspects including the choice of transistor, negative feedback circuits, load coupling, and operation at the highest phase slope for minimum phase noise are discussed.  相似文献   

4.
The use of surface-transverse-wave (STW) resonator-based oscillators as amplifiers and as carrier recovery elements is discussed. It is demonstrated that these oscillators can amplify phase-shift-keyed signals with very little added noise, while providing a constant output power. Their performance in carrier recovery amplifications is analyzed. Experimental results showing the amplification with more than 80 dB of dynamic range of a 2 Mb/s BPSK signal and the carrier recovery of an 8 Mb/s signal with a 1-GHz STW oscillator are shown.  相似文献   

5.
High-overtone, bulk acoustic resonators (HBAR) have been designed that exhibit 9-dB insertion loss and loaded Q values of 80000 at 640 MHz with out-of-phase resonances occurring every 2.5 MHz. These resonators have been used as ovenized frequency-control elements in very low phase noise oscillators. The oscillator sustaining stage circuitry incorporates low-1/f noise modular RF amplifiers, Schottky-diode ALC, and a miniature 2-pole helical filter for suppression of HBAR adjacent resonant responses. Measurement of oscillator output signal flicker-of-frequency noise confirms that state-of-the-art levels of short-term frequency stability have been obtained. Sustaining stage circuit contribution to resulting oscillator flicker-of-frequency noise is 7-10 dB below that due to the resonators themselves. At 16-dBm resonator drive, an oscillator output signal white phase noise floor level of -175 dBc/Hz is achieved.  相似文献   

6.
We have studied the amplitude modulation (AM) and phase modulation (PM) noise in a number of 5 MHz and 100 MHz oscillators to provide a basis for developing models of the origin of AM noise. To adequately characterize the AM noise in high performance quartz oscillators, we found it necessary to use two-channel cross-correlation AM detection. In the quartz oscillators studied, the power spectral density (PSD) of the f(-1) and f(0) regions of AM noise is closely related to that of the PM noise. The major difference between different oscillators of the same design depends on the flicker noise performance of the resonator. We therefore propose that the f(-1) and f(0) regions of AM and PM noise arise from the same physical processes, probably originating in the sustaining amplifier.  相似文献   

7.
This paper describes the design of very low noise, tunable, X-band dielectric resonator oscillators (DROs) demonstrating phase-noise performance of -135 dBc/Hz at 10 kHz offset. SiGe transistors are used for the oscillator sustaining amplifiers that offer a circulating power of 12 dBm and a gain of 5.4 dB per stage as well as a low flicker noise corner of 40 kHz. A variety of resonator configurations utilising BaTiO3 resonators are presented demonstrating unloaded Qs from 10 000 to 22 000. These resonators are optimised and coupled to the amplifiers for minimum phase noise where QL/Q0 = 1/2, and hence S21 = -6 dB. To incorporate tuning with low additional phase noise, a phase shifter is also investigated. The theory for the low noise oscillator design is included; experimental results demonstrate close correlation with the theory.  相似文献   

8.
This paper presents a new RF built-in self-test (BIST) measurement and a new automatic-performance-compensation network for a system-on-chip (SoC) transceiver. We built a 5-GHz low noise amplifier (LNA) with an on-chip BIST circuit using 0.18-/spl mu/m SiGe technology. The BIST-measurement circuit contains a test amplifier and RF peak detectors. The complete measurement setup contains an LNA with a BIST circuit, an external RF source, RF relays, 50-/spl Omega/ load impedance, and a dc voltmeter. The proposed BIST circuit measures input impedance, gain, noise figure, input return loss, and output signal-to-noise ratio of the LNA. The test technique utilizes the output dc-voltage measurements, and these measured values are translated to the LNA specifications such as the gain through the developed equations. The performance of the LNA was improved by using the new automatic compensation network (ACN) that adjusts the performance of the LNA with the processor in the SoC transceiver.  相似文献   

9.
Through the use of N series-connected quartz crystal resonators in an oscillator circuit, a 10 log N reduction in both flicker-of-frequency noise and white phase-noise (floor) levels has been demonstrated. The reduction in flicker noise occurs as a result of the uncorrelated short-term frequency instability in each of the resonators, and the reduction in noise floor level is a simple result of the increase in net, allowable crystal drive level. This technique has been used in 40-, 80-, and 100-MHz AT-, BT-, and SC-cut crystal oscillators using low flicker-of-phase noise modular amplifier sustaining stages, and four series connected crystals. Total (four crystal) power dissipations of up to 30 mW have been utilized. State-of-the-art, flicker-of-frequency noise levels have been obtained with noise-floor levels (80 MHz) as low as -180 dBc/Hz. Four- to five-fold reduction in acceleration sensitivities has been determined  相似文献   

10.
It is shown that surface transverse wave (STW) resonant devices are not only very well suited for stable oscillator applications but have some unique features offering greater design flexibility than their surface acoustic wave (SAW) counterparts. Various designs for single- and multimode resonators and resonator filters are presented, and their properties in respect to applications in stable fundamental-mode fixed-frequency and voltage-controlled oscillators in the range of 750 MHz to 2 GHz are discussed. Characteristics of SAW and STW two-port metal strip resonators using identical designs are compared. Data from frequency trimming on STW resonators, using heavy ion bombardment, are presented.  相似文献   

11.
The optimization of radiofrequency amplifiers involving dc SQUIDs is discussed for both tuned and untuned input circuits. For a given frequency and input coil coupled to the SQUID, expressions are obtained for the optimum source resistance, gain, and noise temperature. The performance of two amplifiers designed according to these predictions is described. The gain of an untuned amplifier operated at 100 MHz and 4.2 K was 16.5±0.5 dB with a noise temperature of 3.8±0.9K; at 1.5 K the gain increased to 19.5±0.5 dB, while the noise temperature decreased to 0.9±0.4 K. A tuned amplifier operated at 93 MHz and 4.2 K had a gain of 18.6±0.5 dB and a noise temperature of 1.7±0.5 K. These results were in good agreement with predicted values.  相似文献   

12.
In this paper we report the results of extensive research on phase modulation (PM) and amplitude modulation (AM) noise in linear bipolar junction transistor (BJT) amplifiers. BJT amplifiers exhibit 1/f PM and AM noise about a carrier signal that is much larger than the amplifiers thermal noise at those frequencies in the absence of the carrier signal. Our work shows that the 1/f PM noise of a BJT based amplifier is accompanied by 1/f AM noise which can be higher, lower, or nearly equal, depending on the circuit implementation. The 1/f AM and PM noise in BJTs is primarily the result of 1/f fluctuations in transistor current, transistor capacitance, circuit supply voltages, circuit impedances, and circuit configuration. We discuss the theory and present experimental data in reference to common emitter amplifiers, but the analysis can be applied to other configurations as well. This study provides the functional dependence of 1/f AM and PM noise on transistor parameters, circuit parameters, and signal frequency, thereby laying the groundwork for a comprehensive theory of 1/f AM and PM noise in BJT amplifiers. We show that in many cases the 1/f PM and AM noise can be reduced below the thermal noise of the amplifier.  相似文献   

13.
A typical low noise oscillator uses a crystal resonator as the frequency-determining element. An understanding of the fundamental nature of acceleration sensitivity in crystal oscillators resides primarily in understanding the behavior of the crystal resonator. The driving factor behind the acceleration-induced frequency shift is shown to be deformation of the resonator. The deformation drives two effects: an essentially linear change in the frequency-determining dimensions of the resonator and an essentially nonlinear effect of changing the velocity of the propagating wave. In this paper, the fundamental nature of acceleration sensitivity is reviewed and clarified, and attendant design guidance is developed for piezoelectric resonators. The basic properties of acceleration sensitivity and general design guidance are developed through the simple examples of “bulk acoustic wave (BAW) in a box” and “surface transverse wave (STW) in a box.” These examples serve to clarify a number of concepts, including the role of mode shape and the basic difference between the BAW and STW cases. The design equations clarify the functional dependencies of the acceleration sensitivities on the full range of crystal resonator design and fabrication parameters  相似文献   

14.
This paper primarily addresses the usefulness of phase-modulation (PM) noise measurements versus noise figure (NF) measurements in characterizing the merit of an amplifier. The residual broadband (white PM) noise is used as the basis for estimating the NF of an amplifier. We have observed experimentally that many amplifiers show an increase in the broadband noise of 1 to 5 dB as the signal level through the amplifier increases. This effect is linked to input power through the amplifier's nonlinear intermodulation distortion. Consequently, this effect is reduced as linearity is increased. We further conclude that, although NF is sometimes used as a selection criteria for an amplifier for low-level signal, NF yields no information about potentially important close-to-carrier 1/f noise of an amplifier nor broadband noise in the presence of a high-level signal, but a PM noise measurements does. We also have verified experimentally that the single-sideband PM noise floor of an amplifier due to thermal noise is -177 dBc/Hz, relative to a carrier input power of 0 dBm.  相似文献   

15.
Transposed flicker noise reduction and removal is demonstrated in 7.6 GHz microwave oscillators for offsets greater than 10 kHz. This is achieved by using a GaAs-based feedforward power amplifier as the oscillation-sustaining stage and incorporating a limiter and resonator elsewhere in the loop. 20 dB noise suppression is demonstrated at 12.5 kHz offset when the error correcting amplifier is switched on. Three oscillator pairs have been built. A transmission line feedback oscillator with a Qo of 180 and two sapphire-based, dielectric resonator oscillators (DROs) with a Qo of 44,500. The difference between the two DROs is a change in the limiter threshold power level of 10 dB. The phase noise rolls-off at (1/f)(2) for offsets greater than 10 kHz for the transmission line oscillator and is set by the thermal noise to within 0-1 dB of the theoretical minimum. The noise performance of the DROs is within 6-12 dB of the theory. Possible reasons for this discrepancy are presented.  相似文献   

16.
Conclusions If the tolerated dynamic error of a dc instrument amplifier is of the same order as the noise level of its amplifying element and certain other conditions are met, the amplifiers with modulation and demodulation have a higher operating speed than those which are provided with direct coupling and use the same components.The replacement of amplifiers with modulation and demodulation by highly-stable direct-coupled amplifiers using planar transistors and other new elements is justified, for the purpose of raising the operating speed, only if the tolerated dynamic error exceeds considerably the mean noise level. These conclusions hold only for a full-wave modulator.Translated from Izmeritel'naya Tekhnika, No. 1, pp. 57–59, January, 1970.  相似文献   

17.
Noise of piezoelectric accelerometer with integral FET amplifier   总被引:1,自引:0,他引:1  
Levinzon  F.A. 《IEEE sensors journal》2005,5(6):1235-1242
Since significant progress has been achieved in the development of low-noise piezoelectric (PE) accelerometers with integral FET amplifiers, detailed noise analysis of the system PE transducer-FET amplifier, and obtaining the engineering formula for its noise floor has become vital. As a result of this analysis, the formula for the noise floor of PE accelerometers in terms of acceleration spectral density is obtained at wide frequency band. Noise floor of the low-noise PE accelerometer comprising low-noise JFET charge amplifiers with some particular parameters of the PE transducer and the JFET amplifier was measured. The theoretical and experimental curves of the PE accelerometer's noise floor have a good correlation with each other at frequencies from 1 Hz to 10 kHz. The contribution of the different noise sources to the overall noise floor is shown. Those noise sources include the mechanical-thermal noise and electrical-thermal noise of the PE transducer and all main noise sources of FET amplifiers: the thermal noise voltage of the FET biasing resistor, the thermal noise of the series resistor between the PE transducer and the gate of the FET, the channel thermal noise voltage, the 1/f noise voltage, and the shot noise current in the gate circuit. At low frequencies, the f/spl les/50 Hz noise floor is determined mainly by the FET biasing resistor's thermal noise and the PE transducer's electrical-thermal noise. At frequencies from about 50 Hz to about 1 kHz, the contribution of the PE transducer's electrical-thermal noise dominates over the amplifier's noise sources by a factor of less than 2. At frequencies above 1 kHz, noise floor is determined mainly by the JFET channel thermal noise and the PE transducer's electrical-thermal noise.  相似文献   

18.
The results of residual phase noise measurements on a number of VHF, UHF, and microwave amplifiers, both silicon (Si) bipolar junction transistor (BJT) and gallium arsenide (GaAs) field effect transistor (FET) based, electronic phase shifters, frequency dividers and multipliers, etc., which are commonly used in a wide variety of frequency source and synthesizer applications are presented. The measurement technique has also been used to evaluate feedback oscillator components, such as the loop and buffer amplifiers, which can play important roles in determining an oscillator's output phase noise spectrum (often in very subtle ways). While some information has previously been published related to component residual phase noise properties, it generally focused on the flicker noise levels of the devices under test, for carrier offset frequencies less than 10 kHz. The work reported herein makes use of an extremely low noise, 500 MHz surface acoustic wave resonator oscillator (SAWRO) test source for residual phase noise measurements, both close-to-and far-from-the-carrier. Using this SAWRO-based test source at 500 MHz, we have been able to achieve a measurement system phase noise floor of -184 dBc/Hz, or better, for carrier offset frequencies greater than 10 kHz, and a system flicker phase noise floor of -150 dBc/Hz, or better, at 1 Hz carrier offset. The paper discusses the results of detailed residual phase noise measurements performed on a number of components using this overall system configuration. Several interesting observations related to the residual phase noise properties of moderate to high power RF amplifiers, i.e., amplifiers with 1 dB gain compression points in the range of +20 to +33 dBm, are highlighted  相似文献   

19.
The paper deals with modeling and testing of radio frequency (RF) amplifiers that operate with wideband signals, such as those involved in emerging wireless and/or wireline communication systems. The use of new parameters, i.e., the so-called modulated$S$-parameters, is particularly encouraged and supported. Differently from traditional$S$-parameters, their measurement no longer requires a sinusoidal signal as test stimulus but a digitally modulated signal of the same type with which the RF amplifier has to operate. The reliability of the new parameters is assessed through a number of experiments conducted on an RF amplifier, which is mainly addressed to very wide bandwidth industrial and commercial applications. Both sinusoidal and modulated$S$-parameters are evaluated, and their ability in describing the real performance of the amplifier when operating with typical wideband signals, such as those involved in third-generation (3G) communication systems, is compared.  相似文献   

20.
In this paper we discuss guidelines for designing linear bipolar junction transistor amplifiers with low 1/f amplitude modulation (AM) and phase modulation (PM) noise. These guidelines are derived from a new theory that relates AM and PM noise to transconductance fluctuations, junction capacitance fluctuations, and circuit architecture. We analyze the noise equations of each process for a common emitter (CE) amplifier and use the results to suggest amplifier designs that minimize the 1/f noise while providing other required attributes such as high gain. Although we use a CE amplifier as an example, the procedure applies to other configurations as well. Experimental noise results for several amplifier configurations are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号