首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A technique to extract the off-state floating-body (FB) voltage of silicon-on-insulator (SOI) CMOS devices is presented. The bias dependent S-parameter measurements of a single standard FB SOI device and its equivalent circuit, along with the capacitance-voltage (C-V) measurements between the drain and source of the same device, are used to determine the FB voltage. No special test structure design is needed. The technique proposes a method for the extraction of the parasitic source, drain, and gate resistances. Using the technique, FB voltage in excess of 0.4 V is measured in a partially depicted (PD) NMOS device at drain voltage of 2.5 V and zero gate voltage  相似文献   

2.
3.
We present a new simple three-terminal technique for measuring the on-state breakdown voltage in HEMTs. The gate current extraction technique involves grounding the source, and extracting a constant current from the gate. The drain current is then ramped from the off-state to the on-state, and the locus of drain voltage is measured. This locus of drain current versus drain voltage provides a simple, unambiguous definition of the on-state breakdown voltage which is consistent with the accepted definition of off-state breakdown. The technique is relatively safe and repeatable so that temperature dependent measurements of on-state breakdown can be carried out. This helps illuminate the physics of both off-state and on-state breakdown  相似文献   

4.
绝缘体上硅动态阈值nMOSFETs特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于绝缘体上硅技术,提出并研制动态阈值nMOSFETs结构.阐述了动态阈值nMOSFETs的工作原理.动态阈值nMOSFETs的阈值电压从VBS=0 V时的580 mV动态变化到VBS=0.6 V时的220 mV,但是这种优势并没有以增加漏电流为代价.因此动态阈值nMOSFETs的驱动能力较之浮体nMOSFETs在低压情况下,更具有优势.工作电压为0.6 V时,动态阈值nMOSFETs的驱动能力是浮体的25.5倍,0.7 V时为12倍.而且浮体nMOSFETs中的浮体效应,诸如Kink效应,反常亚阈值斜率和击穿电压降低等,均被动态阈值nMOSFETs结构有效抑制.  相似文献   

5.
The j-MOS transistor reported earlier has now been fabricated in silicon-on-insulator (SOI) prepared by oxygen ion implantation. Significant improvements in the drain breakdown voltage and off-state leakage current are attributed to a contoured gate oxide and to the quality of the SOI structure, respectively. The electron mobility in the channel silicon is 910 cm2/V . s and the minority-carrier lifetime is 3 µs. We conclude that the j-MOS transistor in SOI shows promise for controlling moderate power loads, particularly in dielectrically isolated power integrated circuit applications.  相似文献   

6.
The gate-induced-drain-leakage (GIDL) currents in thin-film SOI/NMOSFET's have been studied before and after front-channel hot-carrier stress. Both the normal-mode stress (with the front gate biased beyond the threshold voltage and the drain biased at a high positive voltage, while the source is grounded with the back gate) and the reverse-mode stress (with the source and drain interchanged) have been investigated. The following significant changes have been observed: i) an increase of the off-state drain GIDL current after the normal-mode stress, especially in the low gate field region, and ii) a decrease of the off-state GIDL current after the reverse-mode stress, especially in the high gate field region. These changes can be attributed to the hot-carrier induced interface traps and their effects on the parasitic bipolar transistor gain in the thin-film SOI/NMOSFET  相似文献   

7.
Off-state modulation of the floating-body potential in partially depleted silicon-on-insulator (PDSOI) transistors from the 90-nm technology generation is observed using pulsed current-voltage (I-V) measurements. Varying the off-value of the gate voltage is shown to either decrease the transient on-current (I/sub on,trans/) of PDSOI devices through gate-to-body leakage or increase I/sub on,trans/ due to gate-induced drain leakage. Dependence of I/sub on,trans/ on off-state gate bias is not observed in bulk devices, PDSOI devices with body contacts, or fully depleted SOI devices, confirming the role of floating-body in the observed effects. Thus, off-state conditions should be accounted for when considering floating-body effects and when using pulsed I-V measurements to study self-heating.  相似文献   

8.
C-V characteristics of fully depleted SOI MOSFETs have been studied using a technique for measuring silicon-film thickness using a MOSFET. The technique is based on C-V measurements between the gate and source/drain at two different back-gate voltages, and only a large-area transistor is required. Using this technique, SOI film thickness mapping was made on a finished SIMOX wafer and a thickness variation of ±150 Å was found. This thickness variation causes as much as a 100-mV variation in the device threshold voltage. The silicon-film thickness variation and threshold-voltage variation across a wafer shows a linear correlation dependence for a fully depleted device. C-V measurements of the back-gate device yield the buried-oxide thickness and parasitic capacitances. The effects of GIDL (gate-induced drain leakage) current on C-V characteristics are also discussed  相似文献   

9.
A sub-micron poly-Si TFT device, operating at a drain bias of 1.5 V, has been studied with respect to channel layer thickness. A thinner channel layer may lead to better good gate control over the entire channel region, thus resulting in a lower threshold voltage. Similarly, under negative gate bias, a thinner channel layer would sustain larger vertical electric field. However, a thinned channel layer can reduce the source/drain bulk punch-through, thus causing a smaller channel region with relatively high electric field for carrier field emission. With using a low drain bias of 1.5 V, for the poly-Si TFT device with a thinner channel layer, the leakage current would be more effectively suppressed by the resultantly smaller channel region with relatively high electric field for carrier field emission. As a result, even for a gate length of 0.5 μm, the poly-Si TFT device with 20-nm channel layer can cause an off-state leakage of about 0.1 pA/μm at a drain bias of 1.5 V, and an on/off current ratio higher than 8 orders can be achieved.  相似文献   

10.
制造了栅长0.1μm,栅氧厚度5.6nm,栅槽180nm的SOI槽栅pMOSFET.给出了器件的转移特性和输出特性.在Vds=-1.5V时,其饱和漏电流为380μA,关态泄漏电流为1.9nA;在Vds=-0.1V下的亚阈值斜率为115mV/dec,DIBL因子为70.7mV/V.实验结果表明,0.1μm SOI槽栅pMOSFET比同尺寸体硅槽栅pMOSFET拥有更好的电流驱动能力和亚阈值特性.  相似文献   

11.
The measurement of anomalous hot-carrier damage in thin-film n-channel SOI MOSFETs is reported. Due to the presence of a parasitic bipolar transistor between the source and drain, the minimum drain voltage for breakdown in these devices occurs when the device is biased in subthreshold. Using charge-pumping measurements, it is shown that if the device is biased in this regime, where single-transistor latch occurs, hot holes are injected into the gate oxide near the drain. Consequently, the maximum allowable drain voltage for these devices is governed by the parasitic bipolar properties of the SOI MOSFET  相似文献   

12.
This work examines different components of leakage current in scaled n-MOSFET's with ultrathin gate oxides (1.4-2.0 nm). Both gate direct tunneling and drain leakage currents are studied by theoretical modeling and experiments, and their effects on the drain current are investigated and compared. It concludes that the source and drain extension to the gate overlap regions have strong effects on device performance in terms of gate tunneling and off-state drain currents  相似文献   

13.
A technique is developed to measure silicon-on-insulator (SOI) silicon device film thickness using a MOSFET. The method is based on CV measurements between gate and source/drain at two different back-gate voltages. The SOI devices used in this study were n+ polysilicon gate n-channel MOSFETs fabricated with modified submicrometer CMOS technology on SIMOX (separation by implanted oxygen) wafers. The SIMOX wafers were implanted with a high dose of oxygen ions (1018 cm-2) at 200 keV and subsequently annealed at 1230°C. The NMOS threshold boron implant dose is 2×1012 cm-2. This method is simple, nondestructive, and no special test structure is needed. Using this technique, SOI film thickness mapping was made on a finished wafer and a thickness variation of ±150 Å was found  相似文献   

14.
Hot-carrier effects (HCE) induced by the parasitic bipolar transistor (PBT) action are thoroughly investigated in deep submicron N-channel SOI MOSFETs for a wide range of temperature and gate length. A multistage device degradation is highlighted for all the experimental conditions. Original Vt variations are also obtained for short-channel devices, a reduction of the threshold voltage being observed for intermediate values of stress time in the case of high stress drain biases. At low temperature (LT), an improvement of the device aging can be obtained in the low Vd range because of the significant reduction of the leakage current in the PBT regime. However, in the case of high Vd, since the strong leakage current cannot be suppressed at LT, the device aging is larger than that obtained at room temperature. On the other hand, the device lifetime in off-state operation is carefully predicted as a function of gate length with various methods. Numerical simulations are also used in order to propose optimized silicon-on-insulator (SOI) architectures for alleviating the PBT action and improving the device performance and reliability  相似文献   

15.
A new SOI NMOSFET with a “LOCOS-like” shape self-aligned polysilicon gate formed on the recessed channel region has been fabricated by a mix-and-match technology. For the first time, we developed a new scheme for implementing self-alignment in both source/drain and gate structure in recessed channel device fabrication. Symmetric source/drain doping profile was obtained and highly symmetric electrical characteristics were observed. Drain current measured from 0.3 μm SOI devices with Vz of 0.773 V and Tox=7.6 nm is 360 μA/μm at VGS=3.5 V and V DS=2.5 V. Improved breakdown characteristics were obtained and the BVDSS (the drain voltage for 1 nA/μm of ID at TGS=0 V) of the device with Leff=0.3 μm under the floating body condition was as high as 3.7 V  相似文献   

16.
吴峻峰  李多力  毕津顺  薛丽君  海潮和   《电子器件》2006,29(4):996-999,1003
就不同边缘注入剂量对H型栅SOI pMOSFETs亚阈值泄漏电流的影响进行了研究。实验结果表明不足的边缘注入将会产生边缘背栅寄生晶体管,并且在高的背栅压下会产生明显的泄漏电流。分析表明尽管H型栅结构的器件在源和漏之间没有直接的边缘泄漏通路,但是在有源扩展区部分,由于LOCOS技术引起的硅膜减薄和剂量损失仍就促使了边缘背栅阈值电压的降低。  相似文献   

17.
The leakage current suppression mechanism in AlGaN/GaN High Electron Mobility Transistors (HEMTs) is investigated. It is known that leakage current can cause severe reliability problems for HEMT devices and conventional AlGaN/GaN HEMT devices suffer from detrimental off-state drain leakage current issues, especially under high off-state drain bias. Therefore, a leakage current suppression technique featuring hybrid-Schottky/ohmic-drain contact is discussed. Through the 2-zones leakage current suppression mechanism by the hybrid-Schottky/drain metal including the shielding effect of the rough ohmic-drain metal morphology and the drain side electric field modulation, AlGaN/GaN HEMT featuring this novel technique can significantly enhance the leakage current suppression capability and improve the breakdown voltage. An analytical method using loop-voltage-scanning is proposed to illustrate the optimization procedure of the hybrid-Schottky/ohmic drain metallization on leakage current suppression. Through the comparison of the loop leakage current hysteresis of conventional ohmic drain HEMT and hybrid-Schottky/ohmic drain, the leakage current suppression mechanism is verified through the leakage current considering surface acceptor-like trap charging/discharging model. Device featuring the hybrid-Schottky/ohmic drain technique shows an improvement in breakdown voltage from 450 V (with no Schottky drain metal) to 855 V with a total drift region length of 9 μm, indicating enhanced off-state reliability characteristics for the AlGaN/GaN HEMT devices.  相似文献   

18.
In this paper, we present the unique features exhibited by a novel double gate MOSFET in which the front gate consists of two side gates as an extension of the source/drain. The asymmetrical side gates are used to induce extremely shallow source/drain regions on either side of the main gate. Using two-dimensional and two-carrier device simulation, we have investigated the improvement in device performance focusing on the threshold voltage roll-off, the drain induced barrier lowering, the subthreshold swing and the hot carrier effect. Based on our simulation results, we demonstrate that the proposed symmetrical double gate SOI MOSFET with asymmetrical side gates for the induced source/drain is far superior in terms of controlling the short-channel effects when compared to the conventional symmetrical double gate SOI MOSFET. We show that when the side gate length is equal to the main gate length, the device can be operated in an optimal condition in terms of threshold voltage roll-off and hot carrier effect. We further show that in the proposed structure the threshold voltage of the device is nearly independent of the side gate bias variation.  相似文献   

19.
Off-state breakdown in power pHEMTs: the impact of the source   总被引:1,自引:0,他引:1  
Conventional wisdom suggests that in pseudomorphic high electron mobility transistors (pHEMTs), the field between the drain and the gate determines off-state breakdown, and that the drain to gate voltage therefore sets the breakdown voltage of the device. Thus, the two terminal breakdown voltage is a widely used figure of merit, and most models for breakdown focus on the depletion region in the gate-drain gap, while altogether ignoring the source. We present extensive new measurements and simulations that demonstrate that for power pHEMTs, the electrostatic interaction of the source seriously degrades the device's gate-drain breakdown. We identify the key aspect ratio that controls the effect, LG:xD where LG is the gate length and xD is the depletion region length on the drain. This work establishes that the design of the source must be taken into consideration in the engineering of high-power pHEMT's  相似文献   

20.
We have developed a novel, low off-state leakage current polycrystalline silicon (poly-Si) thin-film transistor (TFT) by introducing a very thin hydrogenated amorphous silicon (a-Si:H) buffer on the poly-Si active layer. The a-Si:H buffer is formed on the whole poly-Si and thus no additional mask step is needed. With an a-Si:H buffer on poly-Si, the off-state leakage current of a coplanar TFT is remarkably reduced, while the reduction of the on-state current is relatively small. The poly-Si TFT with an a-Si:H buffer exhibited a field effect mobility of 12 cm2/Vs and an off-state leakage current of 3 fA/μm at the drain voltage of 1 V and the gate voltage of -5 V  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号