首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Microstructure development in Bi0.5(Na0.5K0.5)0.5TiO3 prepared by a reactive-templated grain growth process was dependent on the sizes of platelike Bi4Ti3O12 (BiT) and equiaxed TiO2 particles used as starting materials. Calcined compacts were composed of large, platelike template grains and small, equiaxed matrix grains, the sizes of which were determined by those of the BiT and TiO2 particles, respectively. Texture was developed by the growth of template grains at the expense of matrix grains during sintering, and a new mechanism of grain growth was proposed on the basis of microstructure observation. The grain growth rate was determined by the template and matrix grain sizes, and a dense ceramic with extensive texture was obtained using small BiT and TiO2 particles.  相似文献   

2.
Textured 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 (NBT–6BT) ceramics were fabricated by templated grain growth (TGG) using anisotropically shaped Na0.5Bi0.5TiO3 (NBT) templates. Platelet NBT was synthesized by the topochemical technique, using precursor Na0.5Bi4.5Ti4O15 (NBIT). The NBT particles have an average length of 10–15 μm and a thickness of 1 μm, which are suitable templates for obtaining textured ceramics (especially NBT-based ceramics) by the TGG process. This study revealed that the NBT templates are effective in inducing grain orientation in NBT–6BT ceramics. For NBT–6BT ceramics textured with 5 vol% NBT templates, a Lotgering factor of 0.87 and a d 33 of 299 pC/N are given.  相似文献   

3.
In this paper we report the effects of formulation on texture development for the "reactive-templated grain growth" (RTGG) of Bi1/2(Na,K)1/2TiO3 (BNKT). The solids formulation for BNKT was systematically varied by prereacting to well—defined alkali and bismuth titanates (Na2Ti3O7 (N2T3), K2Ti2O5 (K2T2), and Bi2Ti4O11 (B2T4)). Use of these precursors in different BNKT formulations determined that the amount of expansion associated with reacting dry-pressed compacts at 600−800°C could be influenced by formulation. Lotgering factors ( F 00 l ) derived from Θ/2Θ X-ray diffraction scans indicated that the formulation route strongly affected the {00 l } texture development in tape-cast and sintered specimens. Prereacting alkali carbonates with TiO2 to form N2T3 and K2T2 inhibited texture development in RTGG-processsed BNKT. However, when Bi2O3 was prereacted to form B2T4, the measured F 00 l increased from 0.5 to 0.7.  相似文献   

4.
The molten salt synthesis (MSS) method is utilized to synthesize the anisotropic platelet Sr3Ti2O7 (S3T2) single-crystal particles. The aim of this study is to identify the essence of platelet Sr3Ti2O7 crystal growth and guide the synthesis of anisotropic platelet SrTiO3 crystals as well as various technologically important materials. Based on the results of X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy, the formation mechanism of platelet Sr3Ti2O7 crystals conforms to a nucleation–structure rearrangement–dissolution–diffusion in situ epitaxial growth mechanism model. First, SrCO3 reacts with TiO2 to form submicrometer SrTiO3 nuclei. Then, most of the nuclei surrounded by salt ions aggregate and rearrange to form a large SrTiO3 matrix. The structural rearrangement and the subsequent in situ epitaxial growth processes control the morphology, composition, and size of the final Sr3Ti2O7 crystals. In the synthesis process, the conversion between SrTiO3 and Sr3Ti2O7 is as follows: and the crystallographic orientation relationship between Sr3Ti2O7 and SrTiO3 in the interface is (100)S3T2//{100}ST, (010)S3T2//{010}ST, and (001)S3T2//{001}ST.  相似文献   

5.
Large plate-like Na0.5Bi0.5TiO3 (NBT) templates have been successfully synthesized from bismuth layer-structured ferroelectric Na0.5Bi4.5Ti4O15 (NBIT) particles by the topochemical method. Because of the highly anisotropic structure, plate-like NBIT particles were first synthesized by the molten-salt process. After the topochemical reaction with the complementary reactants (Na2CO3, and TiO2) in NaCl flux, the layer-structured NBIT particles were transformed to the perovskite NBT templates. The resulting NBT templates are large and of plate-like shape. Our results also reveal that they are more effective in inducing grain orientation in the BNKT-BT ceramics as compared with BIT templates. For a BNKT-BT ceramic textured with 20 wt% of NBT templates, it exhibits a very high degree of grain orientation and gives a large Lotgering factor of 0.89.  相似文献   

6.
Plate-like Na0.5Bi0.5TiO3 (NBT) particles with perovskite structure were synthesized by topochemical microcrystal conversion from plate-like particles of layer-structured Na0.5Bi4.5Ti4O15 (NBIT) at 950°C in NaCl molten salt. As the precursors of NBT, plate-like NBIT particles were first synthesized by molten salt process by the reaction of Bi4Ti3O12, Na2CO3, and TiO2. After the topochemical reactions, layer-structured NBIT particles were transformed to the perovskite NBT platelets. NBT particles with a thickness of approximately 0.5 μm and a length of 10–15 μm retained the morphology feature of the precursor. High-aspect-ratio NBT platelets are suitable templates to obtain textured ceramics (especially NBT-based ceramics) by (reactive) template grain growth process.  相似文献   

7.
The dielectric characteristics of BaBi2Nb2O9, BaBi4Ti4O15, BaBi8Ti7O27, and La-substituted SrBi4Ti4O4 were investigated to discuss their ferroelectric phase transition and relaxor behaviors. BaBi2Nb2O9 showed typical relaxor behaviors, and a shift of T m with increasing frequency was observed in BaBi4Ti4O15 and SrBi4− x La x Ti4O15 ( x =0.8, 1.0) but they underwent a real paraelectric–ferroelectric phase transition on zero-field cooling, while BaBi8Ti7O27 showed a normal ferroelectric nature. The reduced concentration and weakened coupling of the dipoles related to A-site bismuth are believed to be responsible for the appearance of short-range electric ordering and the relaxor behaviors in these bismuth layer-structured compounds.  相似文献   

8.
in a recent article of the Journal , Yu et al .1 reported their experimental results on the effect of Al2O3 and Bi2O3 on the formation mechanism of Sn-doped Ba2Ti9O20. They claimed that both Al2O3 and Bi2O3 can dramatically assist the formation of Sn-doped Ba2Ti9O20 but are based on different mechanisms. They concluded that first, Bi2O3 melts above 830°C and accelerates the migration of the involved reactants to form Ba2Ti9O20; second, Al2O3 can reduce the height of the potential energy barrier of the formation of Ba2Ti9O20 due to the intergrowth of BaAl2Ti6O16 phase. They explained their results from a point of view that the formation of Ba2Ti9O20 is controlled by (1) the migration of reactants to the interfaces and (2) the height of the potential-energy barrier of the reaction at the interfaces. However, based on their results, we feel their conclusions are incautious and may be misleading, as will be discussed later.  相似文献   

9.
In this paper, the microwave-assisted molten salt method (MAMSS) and molten salt method (MSS) were used to synthesize SrBi4Ti4O15 (SBT). The phase constitution was determined by powder X-ray diffraction and the microstructure of powder was examined by scanning electron microscopy. In contrast to the conventional MSS method, MAMSS produces more distinct plate-like grains and synthesizes both SBT and Bi4Ti3O12 (BTO) at 600°C with a 30-min soaking time. The increase of temperature and soaking time can make the plate-like grains of BTO more distinct.  相似文献   

10.
Hard lead zirconate titanate (PZT) and PZT/Al2O3 composites were prepared and the alternating-electric-field-induced crack growth behavior of a precrack above the coercive field was evaluated via optical and scanning electron microscopy. The crack extension in the 1.0 vol% Al2O3 composite was significantly smaller than that in monolithic PZT and the 0.5 vol% Al2O3 composite. Secondary-phase Al2O3 dispersoids were found both at grain boundaries and within grains in the composites. A large number of dispersoids were observed at the grain boundaries in the 1.0 vol% Al2O3 composite. It appears that the Al2O3 dispersoids reinforce the grain boundaries of the PZT matrix as well as act as effective pins against microcrack propagation.  相似文献   

11.
Composites of β-Ce2O3·11Al2O3 and tetragonal ZrO2 were fabricated by a reductive atmosphere sintering of mixed powders of CeO2, ZrO2 (2 mol% Y2O3), and Al2O3. The composites had microstructures composed of elongated grains of β-Ce2O3·11Al2O3 in a Y-TZP matrix. The β-Ce2O3·11Al2O3 decomposed to α-Al2O3 and CeO2 by annealing at 1500°C for 1 h in oxygen. The elongated single grain of β-Ce2O3·11Al2O3 divided into several grains of α-Al2O3 and ZrO2 doped with Y2O3 and CeO2. High-temperature bending strength of the oxygen-annealed α-Al2O3 composite was comparable to the β-Ce2O3·11Al2O3 composite before annealing.  相似文献   

12.
High-performance Ba2Ti9O20 ceramics are attracting great attention, but their formation mechanism still is somewhat unclear. The present investigation shows that the formation of Ba2Ti9O20 can be promoted strikingly by the participation of Bi2O3 and Al2O3. The effect of Bi2O3 on the formation of Ba2Ti9O20 is attributed to the fact that migration of the involved reactants is accelerated by liquid which forms from the melting of Bi2O3 above 830°C. This migration, however, is not the only rate-limiting factor. A high potential-energy barrier, resulting from stress that arises along the crystal-structured layers, also heavily restricts the formation of Ba2Ti9O20. The participation of Al2O3, on the other hand, can reduce the height of this potential-energy barrier and effectively improve the kinetics of the formation of Ba2Ti9O20 by causing the formation of BaAI2Ti6O16 crystals; these crystals intergrow with Ba2Ti9O20 crystals and result in decreased stress.  相似文献   

13.
The ternary system SrO-CeO2-TiO2 was investigated using X-ray diffractometry. The formation of a new compound, Sr2Ce2Ti5O16, was established, and its compatibilities with SrO, SrCeO3, and SrTiO3 were studied. The results revealed the existence of a series of compounds Sr6–12xCe6xTi5O16 and solid solutions Sr2+nCe2Ti5+nO16+3n ( n ≤ 6).  相似文献   

14.
Processing and Characterization of BaTi4O9   总被引:1,自引:0,他引:1  
BaTi4O9 powder prepared by calcining BaCO3 and TiO2 powders was sintered to over 97% of theoretical density. Less than 5% Ba2Ti9O20 occurred as a second phase in "pure" BaTi4O9, and Al2O3 impurities from processing formed isolated hollandite (∼BaAl2Ti6O16) grains, which were identified by fringes in bright-field TEM images. For pure BaTi4O9 at 1 MHz, a dielectric loss (tan δ) of 5 × 10−4 and dielectric constant of 39 were recorded. Hollandite impurities were found to increase tan δ by 2 orders of magnitude, whereas firing in oxygen decreased tan δ by an order of magnitude.  相似文献   

15.
Highly textured PMN-28PT (0.72Pb(Mg1/3Nb2/3)O3–0.28PbTiO3) ceramics were produced by templated grain growth on <001> oriented platelet-shaped SrTiO3 template particles with an aspect ratio of 10–15. The templates were aligned in PMN-28PT matrix powder via tape casting and fired in an O2–PbO atmosphere at 1150°C for up to 15 h. This resulted in textured ceramics with a 40 micrometer grain size and without residual templates. The volume fraction of textured material (  f  ) and the orientation parameter ( r ) were quantified by fitting X-ray diffraction rocking curve data to the March–Dollase equation. Processing conditions were optimized to achieve the best possible values of f and r for the chosen templates and matrix powder. A texture fraction of at least 81 vol% and an orientation parameter of 0.2 were achieved when all random matrix grains were consumed (a perfect textured ceramic would show a texture fraction of 100 vol% and an orientation parameter of 0).  相似文献   

16.
A core-shell structure was observed in SrTiO3 doped with 1.2 mol% of Nb2O5, after sintering in a reducing atmosphere (5H2-95N2) and then in an oxidizing atmosphere (air). In undoped and Al2O3-doped SrTiO3 specimens, no core-shell structure formed after the same sintering treatments as those for SrTiO3 doped with 1.2 mol% of Nb2O5. The measured chemical compositions of the core and shell regions of 1.2-mol%-Nb2O5-doped SrTiO3 grains showed that the Sr/(Ti + Nb) ratio of the shell regions grown in air was ~1% less than that of core regions grown in 5H2-95N2, which was in good agreement with a value predicted by available defect equations. Therefore, the observed core-shell structure is thought to result from the formation of strontium vacancies in an oxidizing atmosphere.  相似文献   

17.
Annealing of ZrO2-toughened Al2O3 (ZTA) at elevated temperatures causes growth of both the intergranular ZrO2 particles and the Al2O3"matrix" grains. Exaggerated ("breakaway") grain growth occurs in some, but not all, specimens. Analytical electron microscopy of two ZTA's, both of which contained a continuous amorphous (glassy) grain-boundary phase, but only one of which showed breakaway grain growth, revealed that the occurrence of breakaway grain growth could be correlated with the chemistry of the ubiquitous glassy grain-boundary phase.  相似文献   

18.
An electroconductive TiN/Al2O3 nanocomposite was prepared by a selective matrix grain growth method, using a powder mixture of submicrosized α-Al2O3, nanosized γ-Al2O3, and TiN nanoparticles synthesized through an in situ nitridation process. During sintering, a self-concentration of TiN nanoparticles at the matrix grain boundary occurred, as a result of the selective growth of large α-Al2O3 matrix grains. Under suitable sintering conditions, a typical interlayer nanostructure with a continuous nanosized TiN interlayer was formed along the Al2O3 matrix grain boundary, and the electroconducting behavior of the material was significantly improved. Twelve volume percent TiN/Al2O3 nanocomposite with such an interlayer nanostructure showed an unprecedentedly low resistivity of 8 × 10−3Ω·cm, which was more than two orders lower than the TiN/Al2O3 nanocomposite without such an interlayer nanostructure.  相似文献   

19.
A region of selected SrO-LnO1.5-TiO2 (Ln = La, Ce, Pr, or Nd) systems was studied experimentally using X-ray diffractometry (XRD). A series of solid solutions with composition Sr4 x Ln2 x/ 3Ti4O12 having tetragonally distorted per-ovskite structures was found to exist along the tie line connecting SrTiO3 and Ln2Ti3O9. Reactions of SrLn2Ti4O12, representative compounds of the series, with SrO were also studied. Additionally, the solubility of TiO2 in Ln2O3-(3TiO2- m (Ln = La, Pr, or Nd) at 1300°C was investigated using XRD.  相似文献   

20.
An isothermal section of the ternary system MgO–Al2O3-Cr2O3 was determined at 1700°± 15°C to delineate the stability field for spinel crystalline solutions (cs). Crystalline solutions were found between the pseudobinary joins MgAl2O4–Cr2O3 and MgCr2O4-Al2O3, and the binary join MgAl2O4-MgO. The first two crystalline solutions exhibit cation vacancy models while the latter can probably be designated as a cation interstitial model. Precipitation from spinel cs may proceed directly to an equilibrium phase, (Al1-xCrx)2O3, with the corundum structure or through a metastable phase of the probable composition Mg(Al1-xCr)26O40. The composition and temperature limits were defined where the precipitation occurs via metastable monoclinic phases. The coherency of the metastable monoclinic phase with the spinel cs matrix can be understood by considering volume changes with equivalent numbers of oxygens and known crystallographic orientation relations. Electron probe and metallographic microscope investigations showed no preferential grain boundary precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号