首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
赵伟  李勇 《微电子学》1994,24(4):36-40
本文叙述了在反应离子刻蚀(ReactiveIonEtching)系统中采用无碳含氟原子刻蚀气体(SF_6,NF_3)对硅的深槽刻蚀;分析了真空压力、射频功率、气体组合及其流量和电极温度对刻蚀速率、刻蚀剖面的影响;并根据实验结果,绘出了刻蚀速率与以上物理变量的函数关系曲线;得到刻蚀速率0.5~0.7μm/min,糟宽≤5.0μm,深度大于6.0μm,横向腐蚀小于1.5μm的各向异性刻蚀剖面。本研究技术将应用于超高速ECL分频器电路,双极高可靠抗辐射加固稳压器件和BiCMOS模拟电路的实际制作中。  相似文献   

2.
王清平  郭林 《微电子学》1996,26(1):35-39
介绍了硅深槽刻蚀的基本原理和影响刻蚀效果的几个主要工艺因素。提出了一种实现1μm宽的硅深槽刻蚀工艺途径;并给出了1μm宽、8μm深、侧壁及底部光洁的硅深槽刻蚀工艺条件。  相似文献   

3.
对HBr反应离子刻蚀硅和SiO2进行了实验研究。介绍了HBr等离子体的刻蚀特性,讨论了HBr反应离子刻蚀硅的刻蚀机理,研究了HBr中微量氧、碳对HBrRIE刻蚀过程的影响。实验表明,HBr是一种刻蚀硅深槽理想的含原子溴反应气体。采用HBrRIE,可获得高选择比(对Si/SiO2)和良好的各向异性。  相似文献   

4.
硅的深槽刻蚀技术研究   总被引:4,自引:0,他引:4  
研究了采用等离子刻蚀机对硅进行深槽刻蚀中掩蔽层的选择及横向腐蚀的抑制等工艺问题。实验发现,以氟基气体作为工艺气体,铝或铝合金作为掩蔽层时,可以获得极高的选择比;通过增大射频功率,改变气体组分,气体流量等方法,可以较好地解决等离子刻蚀中的各向同性问题。  相似文献   

5.
在高密度反应离子刻蚀技术中,存在明显的线宽损失,对小尺寸MEMS结构影响很大,将使MEMS器件灵敏度下降,稳定性降低。本文介绍了一种减小线宽损失的新工艺技术,在初始阶段的刻蚀步骤中加入剂量逐渐递减的钝化气体C4F8,同时适当减小循环周期的刻蚀时间,使线宽损失由原来常规刻蚀工艺中的155nm减少到55nm。此项技术已经应用于MEMS陀螺的制造工艺中,取得了很好的结果。  相似文献   

6.
硅深槽ICP刻蚀中刻蚀条件对形貌的影响   总被引:2,自引:0,他引:2  
以SF6/C2 H4为刻蚀气体,使用Corial200IL感应耦合等离子体(ICP)刻蚀系统,进行Si等离子刻蚀技术研究.通过调节刻蚀气体SF6与侧壁钝化保护气体C2H4的流量比和绝对值等工艺参数,对深Si刻蚀的形貌以及侧壁钻蚀情况进行改善,使该设备能够满足深硅刻蚀的基本要求,解决MEMS工艺及TSV工艺中的深硅刻蚀问题.实验结果表明,Corial200IL系统用SF6作等离子体刻蚀气体,对Si的刻蚀具有各向同性;C2H4作钝化气体,能够对刻蚀侧壁进行有效的保护,但由于C2H4的含量直接影响刻蚀速率和选择比,需对其含量及配比严格控制.研究结果为:SF6含量为40 sccm、C2H4含量为15 sccm时能够有效控制侧壁钻蚀,且具有较大的选择比,初步满足深硅槽刻蚀的条件.  相似文献   

7.
ICP硅深槽刻蚀中的线宽控制问题研究   总被引:1,自引:0,他引:1  
在高密度反应离子刻蚀技术中 ,存在明显的线宽损失 ,对小尺寸MEMS结构影响很大 ,将使MEMS器件灵敏度下降 ,稳定性降低。本文介绍了一种减小线宽损失的新工艺技术 ,在初始阶段的刻蚀步骤中加入剂量逐渐递减的钝化气体C4 F8,同时适当减小循环周期的刻蚀时间 ,使线宽损失由原来常规刻蚀工艺中的 15 5nm减少到 5 5nm。此项技术已经应用于MEMS陀螺的制造工艺中 ,取得了很好的结果  相似文献   

8.
在高密度反应离子刻蚀技术中,存在明显的线宽损失,对小尺寸MEMS结构影响很大,将使MEMS器件灵敏度下降,稳定性降低.本文介绍了一种减小线宽损失的新工艺技术,在初始阶段的刻蚀步骤中加入剂量逐渐递减的钝化气体C4F8,同时适当减小循环周期的刻蚀时间,使线宽损失由原来常规刻蚀工艺中的155nm减少到55nm.此项技术已经应用于MEMS陀螺的制造工艺中,取得了很好的结果.  相似文献   

9.
用于MEMS的硅湿法深槽刻蚀技术研究   总被引:2,自引:0,他引:2  
针对用于MEMS的硅湿法深槽刻蚀技术,对KOH腐蚀液的配方、掩蔽技术等关键技术进行了研究,获得了优化的KOH腐蚀条件;利用该技术,成功地刻蚀出深度高达315μm、保护区域完好的深槽。为硅基MEMS体加工获得微机械结构提供了一个好方法。  相似文献   

10.
研究了锆钛酸铅(PZT)薄膜的深槽反应离子刻蚀(DRIE)技术。首先,对比了3种工艺气氛条件下(SF6/Ar、CF4/Ar和CHF3/Ar)刻蚀PZT的效果。实验结果表明,3种工艺气氛下,刻蚀速率都随功率的增加而增加。相同功率下,SF6/Ar的刻蚀速率最高;而CHF3/Ar刻蚀PZT的图形形貌最好,对光刻胶的选择比也最好。最后得出了优化的工艺条件为采用CHF3/Ar,射频(RF)功率为160 W,气体流量比为3∶4(CHF3∶Ar=30 cm3/min:40 cm3/min)时,PZT薄膜的刻蚀速率为9 nm/min,光刻胶的选择比为7。  相似文献   

11.
随着现代科技的发展,人们对微系统的小型化、高性能、多功能、低功耗和低成本的要求越来越高,基于硅通孔技术技术的三维系统封装技术(3D SiP,three dimensional dystem in packaging)愈发显现出其重要的研究价值.硅通孔技术将集成电路垂直堆叠,在更小的面积上大幅地提升芯片性能并增加芯片功能...  相似文献   

12.
硅传感器反应离子刻蚀的观察   总被引:1,自引:0,他引:1  
六十年代发展起来的微电子技术,已大大影响了人类社会的面貌,而由微电子技术与机械学相互交叉而诞生的微机械技术,正成为一项新的产业。微电子技术以硅的平面加工技术为主,其制造工艺一般在表面几十微米以内。而微机械的厚度(或深度)往往达到几百微米,因此,必须研究硅的深加工技术以适应微机械的需求。本文以制作一种以玻璃为衬底的单晶硅叉指电容式加速度传感器为目的,开展了离子刻蚀技术的研究[1]。硅的反应离子刻蚀是一个复杂的辉光放电等离子体物理一化学作用过程。该技术早期存在刻蚀速率低,不能获得高的深宽比,掩膜选择比不高等技术障…  相似文献   

13.
《电子与封装》2017,(9):41-43
在CMOS多晶硅刻蚀工艺的基础上进行工艺开发,采用氯气和溴化氢气体进行硅槽刻蚀。通过对功率、压力、气体流量等工艺参数拉偏,用扫描电子显微镜观察硅槽侧壁形貌,分析各参数在反应离子刻蚀中所起到的作用,得到对硅槽形貌影响较大的因素,最终得到一种能够与CMOS工艺兼容的硅槽刻蚀方法。该方法能够制作出深度6μm、深宽比4∶1、侧壁光滑的硅槽,可以用于光电继电器、硅电容等新型器件的研发。  相似文献   

14.
平滑陡直的Si深槽刻蚀方法   总被引:1,自引:0,他引:1  
Si深槽刻蚀技术在MEMS器件加工中具有重要的作用,现有的刻蚀方法在选择比和各向异性问题上各有优缺点.常用的Bosch工艺采取了钝化与刻蚀交替进行的措施,但具有侧壁粗糙的缺点.提出了不同于Bosch工艺的新刻蚀方法,采用刻蚀反应和淀积钝化反应同时进行并保持化学平衡的方法,取得了平滑陡直的刻蚀效果.在电感耦合等离子体刻蚀机ICP-98A上的实验结果表明,在直径100 nim的光刻胶掩蔽Si片上,刻蚀深度为39.2 pm,光刻胶剩余4.8 μm,侧壁表面满足平滑陡直的要求.  相似文献   

15.
本文介绍了一种全干法二步刻蚀制造高发射效率的场发射阵列(FieldEmitterArrary-FEA)的方法。首先利用等离子刻蚀(PlasmaEtching-PE)的各向同性在由SiO2掩模的硅衬底上刻出平顶尖锥,然后再利用反应离子刻蚀(ReactiveIonEtching-RIE)的各向异性,在PE的基础上进一步刻蚀来拔高尖锥并减少尖锥顶部的面积,以得到理想形状的FEA尖锥。这种方法比RIE一步刻蚀法和湿法刻蚀加RIE二步法简单可靠。  相似文献   

16.
范忠  赖宗声  秦元菊  孔庆粤 《微电子学》2001,31(3):195-197,203
研究了SF6等离子体横向刻蚀硅的速率和对SiO2的选择性,主要通过改变SF6气体流量和加入O2,提高硅的横向刻蚀速率和对SiO2选择性。实验发现,加入O2能提高SF6等离子对Si的横向刻蚀速率和Si/SiO2的刻蚀速率比。Si的横向刻蚀速率最高可达0.45μm/min,Si/SiO2的刻蚀比可达50:1。最后提出,在一定刻蚀条件下,可增加SiO2掩膜厚度,或用金属铝作掩膜来加大Si的横向刻蚀量。  相似文献   

17.
18.
19.
李祥 《微电子技术》1995,23(1):20-28
集成电路的发展使硅槽的应用越业越广泛,如硅槽隔离和槽电容等等,它们将使器件的性能得到很好的改善。  相似文献   

20.
硅槽刻蚀技术中的源气体选择   总被引:1,自引:0,他引:1  
王清平  苏韧 《微电子学》1994,24(6):65-68
源气体及组分的选择是硅槽刻蚀技术的关键因素。本文介绍了刻蚀过程中源气体及组分对硅的作用方式,从刻蚀速率、侧壁钝化、损伤、刻蚀均匀性等方面分析比较了近年来所出现的几种硅糟刻蚀用源气体及组分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号