首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation behavior of MoSi2 was investigated in air over the temperature range of 1400–1700 °C. Spallation of the SiO2 scale did not occur at any temperature, and Mo5Si3 formation did not happen below 1700 °C. A change in the rate-controlling mechanism was detected within the temperature range of this study. Activation energy for oxidation of MoSi2 at high temperatures was determined to be 204 kJ/mol. This value is less than the value of activation energy for oxidation of MoSi2 controlled by diffusion of O2 through amorphous SiO2 layer reported at lower temperatures. The decrease in activation energy is attributed to the increased degree of crystallization of amorphous silica to β-cristobalite at high temperatures resulting in enhanced O2 diffusion through SiO4−4 tetrahedral structure.  相似文献   

2.
ZrB2 (zirconium diboride)-based ceramics reinforced by 15vol.% SiC whiskers with high density were successfully prepared using MoSi2 as sintering aids. The effects of sintering condition and MoSi2 content on densification behavior, phase composition, and mechanical properties of SiCw/ZrB2 composites were studied. Nearly, fully dense materials (relative density >99%) were obtained by hot-pressing (HP) at 1700°C–1800°C in flow argon atmosphere. The grain size of ZrB2 phase in the samples sintered by HP at 1700°C–1800°C were very fine, with mean size below 5 μm. Mechanical properties (such as flexural strength, fracture toughness, and Vickers hardness) of the sintered samples were measured. The sample with 15vol.% MoSi2 addition sintered by HP at 1750°C displayed the best mechanical properties.  相似文献   

3.
4.
5.
The formation of solid solutions of the type [Ba(HOC2H4OH)4][Sn1−x Ge x (OC2H4O)3] as BaSn1−x /Ge x O3 precursor and the phase evolution during its thermal decomposition are described in this paper. The 1,2-ethanediolato complexes can be decomposed to nano-sized BaSn1−x /Ge x O3 preceramic powders. Samples with x = 0.05 consist of only a Ba(Sn,Ge)O3 phase, whereas powders with x = 0.15 and 0.25 show diffraction patterns of both the Ba(Sn,Ge)O3 and BaGeO3 phase. The sintering behaviour was investigated on powders with a BaGeO3 content of 5 and 15 mol%. These powders show a specific surface area of 15.4–15.9 m2/g and were obtained from calcination above 800 °C. The addition of BaGeO3 reduced the sintering temperature of the ceramics drastically. BaSn0.95Ge0.05O3 ceramics with a relative density of at least 90% can be obtained by sintering at 1150 °C for 1 h. The ceramic bodies reveal a fine microstructure with cubical-shaped grains between 0.25 and 0.6 μm. For dense ceramics, the sintering temperature could be reduced down to 1090 °C, when the soaking time was extended up to 10 h.  相似文献   

6.
The characteristic details of the carbothermal synthesis of TiB2 powders from the stoichiometric mixture TiO2–H3BO3–C at temperatures lower 1700 K are investigated using thermal analysis (ТG—thermogravimetry and DSC—differential scanning calorimetry), as well as X-ray diffraction and scanning electron microscopy. In the temperature interval 300 K → 1673 K → 1273 K and at a heating rate of 10 K/min, the reaction in the powder mixture begins at approximately 1300 K and ends at 1470 K during cooling. After 3 h of isothermal synthesis at 1473 K, the TiB2 yield is more than 90%. The resulting products are hexagonal plate-like crystals 5–10 μm across with thickness of 3 to 4 μm. Kinetic analysis showed that in the temperature range of 1330 to 1673 K the TiB2 synthesis reaction is of the first-order, and the calculated activation energy of the process is 315 ± 24 kJ/mol.  相似文献   

7.
A technique has been developed for the self-propagating high-temperature synthesis of lutetium oxide (Lu2O3) powders using citric acid, glycine, and lutetium acetate as fuels. We have carried out thermodynamic analysis of synthesis conditions and examined the effect of the nature of the fuel on the properties of the resultant powders. Using vacuum sintering at a temperature of 1780°C and powders prepared with glycine as a fuel and containing 25 mol % yttrium oxide and 5 mol % lanthanum oxide as sintering aids, we have obtained transparent lutetium oxide-based ceramics.  相似文献   

8.
The high-temperature (>1600°C) order—disorder phase transition of Tm2Ti2O7 is shown to be irreversible. The 740°C ionic conductivity of nanocrystalline Tm2Ti2O7 ceramics synthesized at 1670°C is 2 × 10-3 S/cm and remains unchanged upon heat treatment in air at 860°C for 240 h. The conductivity of the high-temperature (disordered pyrochlore) phase of Tm2Ti2O7 is independent of grain size in the range 20–30 nm.Translated from Neorganicheskie Materialy, Vol. 40, No. 12, 2004, pp. 1495–1500.Original Russian Text Copyright © 2004 by Shlyakhtina, Knotko, Larina, Borichev, Shcherbakova.  相似文献   

9.
We have studied the properties of nanocrystalline ZrO2-Y2O3-CeO2-CoO-Al2O3 powders prepared via hydrothermal treatment of a mixture of coprecipitated hydroxides at 210°C. A number of general trends are identified in the variation of the properties of the synthesized powders during heat treatment at temperatures from 500 to 1200°C. Our results demonstrate that the addition of 0.3 mol % CoO to nanocrystalline ZrO2-based powders containing 1 to 5 mol % Al2O3 allows one to obtain composites with good sinterability at a reduced temperature (1200°C).  相似文献   

10.
High-temperature mass spectrometry is used to investigate vaporization processes and determine SiO2 activity in the Al2O3-SiO2 system between 1850 and 1970 K. The results are consistent with the known phase equilibria in this system.__________Translated from Neorganicheskie Materialy, Vol. 41, No. 4, 2005, pp. 434–441.Original Russian Text Copyright © 2005 by Bondar, Lopatin, Stolyarova.  相似文献   

11.
The Eu2Sn2O7 compound has been prepared by solid-state reaction (by sequentially firing a stoichiometric mixture of Eu2O3 and SnO2 in air at 1273 and 1473 K) and its heat capacity has been determined by differential scanning calorimetry in the temperature range 370–1000 K. The heat capacity data have been used to evaluate the thermodynamic properties of europium stannate: enthalpy increment H°(T)–H°(370 K), entropy change S°(T)–S°(370 K), and reduced Gibbs energy Ф°(T). Raman spectra of Eu2Sn2O7 polycrystals with the pyrochlore structure have been measured in the range 200–1200 cm–1.  相似文献   

12.
Tb2Sn2O7 has been prepared by solid-state reaction in air at 1473 K over a period of 200 h and its isobaric heat capacity has been studied experimentally in the range 350–1073 K. The C p(T) data for this compound have no extrema and are well represented by the classic Maier–Kelley equation. The experimental C p(T) data have been used to evaluate the thermodynamic properties of terbium stannate (pyrochlore structure): enthalpy increment H°(T)–H°(350 K), entropy change S°(T)–S°(350 K), and reduced Gibbs energy Ф°(Т).  相似文献   

13.
Thermal deformations of Na6(UO2)2O(MoO4)4 were studied by high-temperature powder X-ray diffraction. The compound crystallizes in the triclinic system, space group Р\(\bar 1\), a = 7.636(7), b = 8.163(6), c = 8.746(4) Å, α = 72.32(9)°, β = 79.36(4)°, γ = 65.79(5)°, V = 472.74(4) Å3. It is stable in the temperature interval 20–700°С. The thermal expansion coefficients (TECs) are α11 = 25.5 × 10–6, α22 = 7.8 × 10–6, and α33 = 1.1 × 10–6 (°C)–1. The orientation of the TEC pattern relative to the crystallographic axes is a33^Z = 45°, a33^X = 122°, a22^Z = 59°, and a22^X = 66°. The anisotropy of the thermal expansion is due to specific features of the crystal structure of the compound.  相似文献   

14.
CaCu3Ti4O12 (CCTO) was synthesized and sintered by microwave processing at 2·45 GHz, 1·1 kW. The optimum calcination temperature using microwave heating was determined to be 950°C for 20 min to obtain cubic CCTO powders. The microwave processed powders were sintered to 94% density at 1000°C/60 min. The microstructural studies carried out on these ceramics revealed the grain size to be in the range 1–7 μm. The dielectric constants for the microwave sintered (1000°C/60 min) ceramics were found to vary from 11000–7700 in the 100 Hz–00 kHz frequency range. Interestingly the dielectric loss had lower values than those sintered by conventional sintering routes and decreases with increase in frequency.  相似文献   

15.
Fine BaZrO3 and BaHfO3 powders have been prepared by a microwave-assisted hydrothermal (MWHT) process. The powders have been characterized by x-ray diffraction and scanning electron microscopy, and their particle size distribution has been assessed from dynamic light scattering data. The results indicate that microwave processing during hydrothermal synthesis notably reduces the average particle size of the resulting powder and ensures a narrower particle size distribution. BaHfO3 particles prepared under the optimal MWHT synthesis conditions are predominantly spherical in shape and uniform in size, with an average size (1.2 μm) a factor of 2.5 smaller in comparison with particles prepared by a conventional hydrothermal process (2.9 μm).  相似文献   

16.
Ti/Si/TiC powder mixture with molar ratios of 2:2:3 were sintered at various temperatures from 700–1300 °C for 15 min by PDS technique. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for the evaluation of phase composition in different samples for the understanding of the sintering mechanism for this system. Results showed that Ti5Si3 formed as the intermediate phase during sintering. The reaction between Ti5Si3 and TiC as well as Si induces the formation of Ti3SiC2, and TiSi2 appears as the byproduct in this process. At temperature above 1000 °C, TiSi2 reacts with TiC to form Ti3SiC2. High Ti3SiC2 phase content bulk material can be synthesized at 1300 °C for 15 min.  相似文献   

17.
Nanocrystalline ytterbia powders have been synthesized using different precursors prepared by precipitation from nitrate solutions: ytterbium carbonates, oxalates, and hydroxides. The powders have been characterized by X-ray diffraction and scanning electron microscopy. The nature of the precursor has no effect on the crystallization temperature of ytterbia but influences its microstructure. The particles range in shape from spherical to platelike. The average crystallite size of the Yb2O3 powders is 20–25 nm. Raising the heat-treatment temperature from 600 to 1000°C increases the crystallite size to 33–46 nm. The highest thermal stability is offered by the ytterbia powders prepared through carbonate decomposition.  相似文献   

18.
The sintering of lime by double calcination process from natural limestone has been conducted with La2O3 and CeO2 additive up to 4 wt.% in the temperature range 1500–1650° C. The results show that the additives enhanced the densification and hydration resistance of sintered lime. Densification is achieved up to 98.5% of the theoretical value with La2O3 and CeO2 addition in lime. Grain growth is substantial when additives are incorporated in lime. The grain size of sintered CaO (1600°C) with 4 wt.% La2O3 addition is 82 μm and that for CeO2 addition is 50 μm. The grains of sintered CaO in presence of additive are angular with pores distributed throughout the matrix. EDX analysis shows that the solid solubility of La2O3 and CeO2 in CaO grain is 2.9 and 1.7 weight %, respectively. The cell dimension of CaO lattice is 4.803 %C. This value decreases with incorporation of La2O3 and CeO2. The better hydration resistance of La2O3 added sintered lime compared to that of CeO2 added one, is related to the bigger grain size of the lime in former case.  相似文献   

19.
SiC reticulated porous ceramics (SiC RPCs) was fabricated with polymer replicas method by using MgO–Al2O3–SiO2 additives as sintering aids at 1,000∼1,450 °C. The MgO–Al2O3–SiO2 additives were from alumina, kaolin and Talc powders. By employing various experimental techniques, zeta potential, viscosity and rheological measurements, the dispersion of mixed powders (SiC, Al2O3, talc and kaolin) in aqueous media using silica sol as a binder was studied. The pH value of the optimum dispersion was found to be around pH 10 for the mixtures. The optimum condition of the slurry suitable for impregnating the polymeric sponge was obtained. At the same time, the influence of the sintering temperature and holding time on the properties of SiC RPCs was investigated. According to the properties of SiC RPCs, the optimal sintering temperature was chosen at 1,300 °C, which was lower than that with Al2O3–SiO2 additives as sintering aids.  相似文献   

20.
We report on the fast preparation of the ternary magnetic semiconductor spinel FeCr2S4 using the Field-Activated Sintering Technique (FAST). The structural (X-ray) and magnetic (Squid) characterization demonstrates a similarity of the properties of the FAST crystals and those prepared by conventional solid-state synthesis. Residual structural disorder in FAST samples has a pronounced influence on the ferrimagnetic–paramagnetic transition and the orbital ordering at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号