首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-bore hollow fiber charged nanofiltration (NF) membrane was prepared by interfacial polymerization (IP). The results showed that the flux and rejection of NF membrane prepared in this study increased with the increasing in the operating pressure. The water flux decreased and rejection for obvious dyes increased as the solute concentration increased. The separation factor for mixture of Xylenol orange/NaCl decreased when NaCl concentration in solution increased and could reach to as high as 18. In addition, three-bore hollow fiber charged nanofiltration membrane prepared in this study has excellent stability for strong acid (pH = 3), strong alkali (pH = 11) and high temperature solution (80 °C).  相似文献   

2.
Polyvinylidene fluoride (PVDF)/polymethylmethacrylate (PMMA)/thermoplastic polyurethane (TPU) blend hollow fiber membranes were successfully prepared by the wet-spinning method with the loading of PMMA and TPU in a range of polymer concentrations varying from 0 to 20 wt% and at a total polymer concentration of 16 wt%. The influence of the addition of PMMA and TPU on the morphologies and the properties of such prepared membranes was investigated through FTIR-ATR, SEM, viscosity measurements, UF experiments and mechanical strength tests. Based on the experimental results, the compatibility of the PVDF, PMMA and TPU blend was best under the conditions of the PVDF-rich phase. The elongation at break of the membrane increased to a maximum of 146% with increase in the TPU concentration to 20 wt% in dope solution. The addition of PMMA increased the water permeation flux from 120 to 195 L/(m(2) h) initially. The flux then decreased when PMMA concentration was increased to over 10 wt%. The membranes obtained at optimized blending ratio were applied to the dyeing process wastewater filtration. During continuous filtration for 8 h, the flux was stabilized at about 20 L/(m(2) h) at 0.1 MPa. The reduction in COD(Cr), turbidity and color were about 63, 84 and 63% respectively.  相似文献   

3.
Organic colloids and their influence on low-pressure membrane filtration.   总被引:1,自引:0,他引:1  
Wastewater treatment by low-pressure membrane filtration (MF and UF) is affected to a large extent by macromolecules and colloids. In order to investigate the influence of organic colloids on the membrane filtration process, colloids were isolated from a wastewater treatment plant effluent using a rotary-evaporation pre-concentration step followed by dialysis. Stirred cell tests were carried out using redissolved colloids, with and without additional glass fiber filtration. After constant pressure membrane filtration of 190 L/m2, the initial flux had declined by 50% for colloids > 6-8 kD (glass fiber filtered) with a hydrophilic MF membrane and for colloids > 12-14 kD (glass fiber filtered) with a hydrophobic MF membrane. For the non-filtered colloidal solutions, the flux decline was even steeper with the flux being below 10% of the initial flux after 190 L/m2 were passed through the membranes. As with larger particles, colloids form a filtration cake layer on top of the membrane surface when used as isolates without prior filtration. This filtration cake is easily removed during backwashing. However, polysaccharides as a macromolecular component of the colloid isolate cause severe fouling by the formation of a gel layer on the membrane surface that is difficult to remove completely.  相似文献   

4.
Membrane filtration is adequate for producing disinfected clear water suitable for various kinds of applications. However, fouling of membranes is the main limitation. The scope of the present study is to examine the effect of iron coagulation of primary wastewater effluent on membrane filtration, in parallel to fouling characterization of the iron itself. The fouling of ultrafiltration membranes by colloidal iron hydroxide-oxide has been studied by measuring the pore streaming potential of PES UF membrane. pH 5.5 (charge neutralization zone) provided better removal and lower fouling intensity than pH 7.8 (sweep coagulation zone), but the internal clogging at acidic pH was higher. Fouling of the membrane as measured by flux reduction was usually accompanied by a positive change in zeta potential and iso-electric point (IEP) of the membrane. An initially large change in zeta potential (without charge reversal) was seen even after relatively small amounts of iron solution were filtered through the membrane. A control experiment showed this is not due to iron adsorption equilibrium, but should probably be attributed to fouling. Change in zeta potential, can be used as an indicator for commencement of fouling even for small flux reductions. UF membrane critical flux after iron filtration can be evaluated more accurately by zeta potential than pressure drop or change in iron concentration.  相似文献   

5.
Microfiltration (MF) and ultrafiltration (UF) pilot plants were operated to produce drinking water from surface water from 1992 to 1996. Microfiltration was combined with pre-coagulation by polyaluminium chloride and was operated in a dead-end mode using hollow fiber polypropylene and monolith type ceramic membranes. Ultrafiltration pilot was operated in both cross-flow and dead-end modes using hollow fiber cellulose acetate membrane and was combined occasionally with powdered activated carbon (PAC) and granular activated carbon (GAC) adsorption. Turbidity in the raw water varied in the range between 1 and 100 mg/L (as standard Kaolin) and was removed almost completely in all MF and UF pilot plants to less than 0.1 mg/L. MF and UF removed metals such as iron, manganese and aluminium well. The background organics in the river water measured as KMnO4 demand varied in the range between 3 and 16 mg/L. KMnO4 demand decreased to less than 2 mg/L and to less than 3 mg/L on the average by the coagulation-MF process and the sole UF process, respectively. Combination of PAC or GAC adsorption with UF resulted in an increased removal of the background organics and the trihalomethanes formation potential as well as the micropollutants such as pesticides. Filtration flux was controlled in the range between 1.5 and 2.5 m/day with the trans-membrane pressure less than 100 kPa in most cases for MF and UF. The average water recovery varied from 99 to 85%.  相似文献   

6.
Mixtures of polyvinylidene fluoride (PVDF) and polyvinyl alcohol (PVA) containing hydrophilic ultrafiltration membranes were prepared by adding PVA (5 to 30%) to PVDF by the phase inversion method. The hydrophilic contact angle (CA), equilibrium water content, pure water flux and bovine serum albumin retention were studied to assess the membrane performance. The anti-fouling performance of modified membrane to the secondary treated water was evaluated by flux decline, washing recovery rate and fouling resistance analysis. Scanning electron microscopy showed that the cross-section structure of the membranes had finger-like pores, which were well developed and uniformly distributed, and the sub-layer structure was looser and more porous with the increasing content of PVA. The CA gradually decreased. The steady flux was 800 L/m(2) h from P15 to P30, and the BSA retention sharply declined. The ultrafiltration tests for secondary treated water indicated that the main fouling source of the modified membrane was the concentration polarization and cake layer resistance. After physical flushing, the flux recovery ratio of the membrane could reach 100% when the PVA content was 5-15%, which shows excellent anti-pollution performance and good prospects for use in processing wastewater from urban sewage.  相似文献   

7.
The objective of this research is to investigate the performance of blend cellulose acetate (CA)-polyethersulphone (PES) membranes prepared using microwave heating (MWH) techniques and then compare it with blend CA-PES membranes prepared using conventional heating (CH) methods using bovine serum albumin solution. The superior membranes were then used in the treatment of palm oil mill effluent (POME). Various blends of CA-PES have been blended with PES in the range of 1-5 wt%. This distinctive series of dope formulations of blend CA/PES and pure CA was prepared using N, N-dimethylformamide (DMF) as solvent. The dope solution was prepared by MW heating for 5 min at a high pulse and the membranes were prepared by phase inversion method. The performances of these membranes were evaluated in terms of pure water and permeate flux, percentage removal of total suspended solids (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). The results indicate that blend membranes prepared using the microwave technique is far more superior compared to that prepared using CH. Blend membranes with 19% CA, 1-3% PES and 80% of DMF solvent were found to be the best membrane formulation.  相似文献   

8.
Various membranes, which have different materials and nominal molecular weight cut-offs (MWCO), were compared in terms of rejection of ibuprofen and removal of effluent organic matter (EfOM) from membrane bioreactor (MBR), because pharmaceutical compounds contain a potential risk and EfOM is the precursor of carcinogenic disinfection by-products when reusing for drinking water source. To provide equivalent comparison with respect to hydrodynamic condition, mass transfer parameter, J0/k ratio, was used. A tight-UF membrane with a molecular weight cut off of 8,000 daltons exhibited 25 approximately 95% removal efficiencies of ibuprofen with a molecular weight of 206 with and without presence of EfOM(MBR). EfOM(MBR) caused the reduction of ibuprofen removal efficiency for UF membrane. Rejection of EfOM(MBR) by UF and NF membranes ranged 29 approximately 47% and 69 approximately 86%, respectively. UF membrane could successfully remove ibuprofen at lower J0/k ratio range (< or = 1) in organic free water but could not efficiently reject ibuprofen with a relatively hydrophilic EfOM(MBR) (SUVA < or = 3).  相似文献   

9.
Fouling of hollow fibre microfiltration and ultrafiltration membranes by solutions of pure organic compounds and mixtures of these compounds was studied with a backwashable membrane filtration apparatus. Small molecular weight compounds resulted in little fouling, while their polymeric analogues resulted in more severe fouling. Neutrally charged dextran resulted in minor, irreversible fouling, that was considered to be associated with blocking of small pores. Cationically charged chitosan produced gross fouling for which the extent of reversibility increased with salt addition. Anionically charged alginic acid resulted in gross irreversible fouling, except when being filtered by a hydrophilic membrane in the absence of calcium where a high degree of flux recovery was observed. Calcium addition to the alginic acid solutions resulted in gross fouling of all membranes and calcium bridging was considered to be responsible for this behaviour. Greater fouling occurred on the hydrophilic membrane compared to the hydrophobic membranes for bovine serum albumin (BSA) solutions, and this was considered to be due to physical blocking of pores, because addition of calcium resulted in lower flux declines. Addition of BSA and calcium to alginic acid solutions resulted in lower flux recoveries for the alginic acid system, consistent with the proposition that interactions between polysaccharide and other compounds are required for irreversible fouling on hydrophilic membranes.  相似文献   

10.
Due to the intrinsically small sizes of enteric viruses (20-100 nm) and their relatively high resistance to most disinfectants, detection of viruses in treated drinking water is not a rare phenomenon. This study therefore evaluates various aspects involved in a hybrid alum coagulation-ultrafiltration (UF) system for virus removal. Coagulant doses (0, 1 and 10 mg Al(3+)/L) and pH conditions relevant to drinking water (pH 6-8) were investigated. With this hybrid system, removal was not attributable merely to MS2 adsorption to flocs and subsequent retention by UF membranes. MS2 removal comprises of inactivation by the effect of pH and coagulant and subsequently, rejection of virus-associated flocs by UF membrane. Coagulation with 1 mg Al(3+)/L at pH 6 and 7 resulted in an overall reduction brought about by an average of 0.62 log inactivation via the pH effect, 1.2 log inactivation by alum coagulant, and >5.4 log rejection by the 100 kDa polyethersulfone UF membrane. In contrast, negligible upstream inactivation was noted with a coagulant dose of 1 mg Al(3+)/L at pH 8, but 5.8 log rejection was attained with downstream UF filtration. By optimizing the conditions appropriate for upstream inactivation and subsequent membrane rejection, virus removal efficiencies can be enhanced.  相似文献   

11.
This paper describes the prediction of flux behavior in an ultrafiltration (UF) membrane system using a Kalman neuro training (KNT) network model. The experimental data was obtained from operating a pilot plant of hollow fiber UF membrane with groundwater for 7 months. The network was trained using operating conditions such as inlet pressure, filtration duration, and feed water quality parameters including turbidity, temperature and UV254. Pre-processing of raw data allowed the normalized input data to be used in sigmoid activation functions. A neural network architecture was structured by modifying the number of hidden layers, neurons and learning iterations. The structure of KNT-neural network with 3 layers and 5 neurons allowed a good prediction of permeate flux by 0.997 of correlation coefficient during the learning phase. Also the validity of the designed model was evaluated with other experimental data not used during the training phase and nonlinear flux behavior was accurately estimated with 0.999 of correlation coefficient and a lower error of prediction in the testing phase. This good flux prediction can provide preliminary criteria in membrane design and set up the proper cleaning cycle in membrane operation. The KNT-artificial neural network is also expected to predict the variation of transmembrane pressure during filtration cycles and can be applied to automation and control of full scale treatment plants.  相似文献   

12.
天然有机物(NOM)在多种地表环境介质中广泛存在。超滤(UF)膜有去除水体中胶体物质、部分细菌及病毒等优势,但NOM所带来的膜污染会限制UF技术广泛应用。在阐述天然有机物来源、特性及去除工艺的基础上,从亲疏水性能、分子量大小和表面荷电性能3方面,分析了NOM性质对超滤膜污染的影响。从优势污染物的确定、膜面有机污染物类型的解析、污染层形态特征的分析及微观相互作用力的表征4个层面,综述了天然有机物引起的超滤膜污染的研究现状,并对超滤膜污染机理研究的方向进行了展望。研究成果可为缓解NOM对UF膜的污染提供理论支撑。  相似文献   

13.
Treatment of dairy wastewater by a two-stage membrane process with ultrafiltration (UF) and nanofiltration (NF) was investigated. The results showed that the flux of UF was higher at pH = 4.6 than that at pH = 8 because the resistance of the fouling membrane was lower at the isoelectric point of protein (pH = 4.6) in UF operation. Protein rejection exceeded 99% by UF + NF operation. Lactose rejections were 98.5 and 54% for UF + NF90 and UF + NF270 respectively. Experiments on membrane cleaning showed that the fouling layer of UF and NF was mainly protein and casein which could be removed by aqueous NaOH with pH = 10. The result of long-term experiments showed that the chemical oxygen demand (COD) of NF90 permeates was below 70 mg/L consistently and the wastewater could be concentrated to 24% by a two-stage membrane process.  相似文献   

14.
This study evaluates the performance of nanofiltration membrane bioreactor (NF MBR) systems using cellulose triacetate (CA) and polyamide (PA) membranes. The results indicated that both NF membranes could produce high quality permeate in the submerged NF MBR system. In addition, hollow fiber CA membranes exhibited the capability of higher permeate productivity than PA membranes. However, to obtain high quality permeate for a long-term operation, CA membranes should be maintained using an appropriate method, such as chlorine disinfection, in order to control the membrane biodegradation. The results demonstrated that PA membranes were capable of producing higher quality permeate for a long period than CA membranes. In order to enhance the practicability of PA membranes in submerged NF MBR systems, it is required that the membranes should have the lowest possible intrinsic salt rejection.  相似文献   

15.
This study focuses on the experimental investigation to identify the effect of PAC at high concentrations on the fouling of membranes. A pilot-scale experimental apparatus was installed at a water treatment plant located downstream of Nakdong river basin, Korea. Effluent of rapid sand filter was used as influent of the system, which consists of PAC bio-reactor, submerged membrane module (hollow fiber with pore size 0.1 m) and air supply facility. PAC was dosed at 40 g/L initially and it was not replaced during the operation period. Suction type filtration was carried out at intervals of 12 min. suction and 3 min. idling. At the initial flux 0.36 m/d, the system could be operated stably for around 90 days at target trans-membrane pressure (TMP) of 40 kPa. Among total resistance of membrane filtration, cake and gel layer resistance, Rc+Rg, was the dominant fraction (more than 90% of the total) to increase the filtration pressure, which means that the filtration resistance could be controlled by the PAC cake layer and then irreversible membrane fouling could be prevented. Three minutes air backwashing every 3 days could extend the operation period to 127 days. Organics were analyzed in terms of molecular weight structure. The influent of the system consists of 15.0% and 74.4% of hydrophobic and hydrophilic natural organic matter (NOM), respectively. Hydrophobic and hydrophilic (electrostatic) interaction was the main factor on fouling of the membrane in the reactor. Hydrophobic fraction decreased slightly in the effluent, which means hydrophobic NOM removal in the reactor by adsorption. Organics accumulated in the membrane were extracted for analysis after a certain period of operation. The fraction of hydrophobic and hydrophilic organics was 41.4% and 38.9%, respectively. On the basis of the experimental results, the hydrophobic organics were the major materials causing the fouling of the membrane, which should be changed to other types of material.  相似文献   

16.
The experimental results indicated that without the TiO2 particles and PCO treatment, the permeate flux of ultrafiltration (UF) membrane declined to 40% of the initial permeate flux after 8 hours filtration. Feeding the humic acid solution with TiO2 particles dosage of 1 g/L with calcium ions into UF membrane, after the same filtration time and PCO reaction at 120 minutes, the permeate flux was increased to about 90% of the initial permeate flux. At longer PCO reaction times, a better water quality of UF permeate was observed. It has been found that with the coexistence of calcium ions in humic acid solution, the smaller molecular fragments of humic acid (HA) generated by PCO reaction may be transferred to the surface of TiO2 by means of adsorption. The humic acid adsorption by TiO2 in the presence of Ca2+ is also pH dependent. The adsorption rates were 21.0, 14.9 and 10.8 ppmTOC/gTiO2 for pH value of 4, 7 and 10 respectively. The combination of effects of PCO mineralization of humic acid into CO2 and adsorption of humic acid by TiO2 through the forming of HA-Ca(2+)-TiO2 aggregate particles were responsible for the removal of humic acid foulant from UF membrane surface.  相似文献   

17.
Singapore has been using dual membrane technology (MF/UF RO) to produce high-grade water (NEWater) from secondary treated sewage. Membrane bioreactor (MBR) has very high potential and will lead to the further improvement of the productivity and quality of high-grade water. This study was focused on the technical feasibility of MBR system for water reclamation in Singapore, making a comparison between various membrane systems available and to get operational experience in terms of membrane cleaning and other issues. Three MBR plants were built at Bedok Water Reclamation Plant with a design flow of 300 m3/day each. They were commissioned in March 2003. Three different types of submerged membranes were tested. They are Membrane A, plate sheet membrane with pore size of 0.4 microm; Membrane B, hollow fibre membrane with pore size of 0.4 microm; and Membrane C, hollow fibre membrane with pore size of 0.035 microm. The permeate quality of all the three MBR Systems were found equivalent to or better than that of the conventional tertiary treatment by ultrafiltration. MBR permeate TOC was about 2 mg/l lower than UF permeate TOC. GC-MS, GC-ECD and HPLC scan results show that trace organic contaminants in MBR permeate and UF permeate were in the same range. MBR power consumption can be less than 1 kwh/m3. Gel layer or dynamic membrane generated on the submerged membrane surface played an important role for the lower MBR permeate TOC than the supernatant TOC in the membrane tank. Intensive chemical cleaning can temporarily remove this layer. During normal operation conditions, the formation of dynamic membrane may need one day to obtain the steady low TOC levels in MBR permeate.  相似文献   

18.
To determine the removal efficiency of ultrafiltration (UF) membranes for nano-particles in the size range of viruses the state of the art uses challenge tests with virus-spiked water. This work focuses on bench-scale and semi-technical scale experiments. Different experimental parameters influencing the removal efficiency of the tested UF membrane modules were analyzed and evaluated for bench- and semi-technical scale experiments. Organic matter in the water matrix highly influenced the removal of the tested bacteriophages MS2 and phiX174. Less membrane fouling (low ΔTMP) led to a reduced phage reduction. Increased flux positively affected phage removal in natural waters. The tested bacteriophages MS2 and phiX174 revealed different removal properties. MS2, which is widely used as a model organism to determine virus removal efficiencies of membranes, mostly showed a better removal than phiX174 for the natural water qualities tested. It seems that MS2 is possibly a less conservative surrogate for human enteric virus removal than phiX174. In bench-scale experiments log removal values (LRV) for MS2 of 2.5-6.0 and of 2.5-4.5 for phiX174 were obtained for the examined range of parameters. Phage removal obtained with differently fabricated semi-technical modules was quite variable for comparable parameter settings, indicating that module fabrication can lead to differing results. Potting temperature and module size were identified as influencing factors. In conclusion, careful attention has to be paid to the choice of experimental settings and module potting when using bench-scale or semi-technical scale experiments for UF membrane challenge tests.  相似文献   

19.
This paper focuses on the evaluation of organic and detergent degradation in a combined Ozone/UF system for domestic laundry wastewater reclamation. Formation of by-product was investigated by GC/MS for the reclaimed water. Ozone was injected into the raw wastewater in a 10 L contact tank and the wastewater was circulated through the membrane module for inner pressurized cross-flow filtration. The concentrate was returned back to the contact tank. The membrane used in this experiment was hollow fiber polysulfone UF membrane with MWCO 10,000. It has an effective filtration area of 0.06 m2. The experiment was carried out with intermittent ozone injection, 5 min injection and 10 min idling. Ozone was dosed at the concentration of 1.5 mg/L. The flux of the UF could be maintained at 0.24 m/d under filtration pressure 40-45 kPa and water temperature, 20-22 degrees C. The organic removal efficiency by the system was 90% in terms of COD. Ozone was considerably effective to degrade organics in the wastewater. Molecular weight of organics in the raw waste was mostly greater than 10,000 (72% of 950 mgCOD/L). However 86% of effluent COD (94-100 mg/L) was composed of organics smaller than MWCO 500 by ozone injection. No harmful by-products by ozone contact were detected from the analysis of treated water using GC/MS. It was identified that residual organics in the treated water were 1,1'-Oxybisbenzene, Octadecanoic acid, Squalene and Benzenmethanol, etc., which were additives contained originally in the detergent. Consequently the reclaimed water quality could be estimated safe enough to recycle for the rinsing cycle in a washing machine.  相似文献   

20.
研究有机物的特性如亲、疏水性以及相对分子质量的大小对超滤膜通量的影响.着重考察混凝对有机物特性的影响以及改善超滤膜通量的效果.试验表明,超滤膜直接过滤原水时,主要截留疏水性有机物,从而造成膜通量的下降.投加硫酸铝25 mg/L和100 mg/L时,虽然TOC去除率仅为18.4%和48.2%,但明显提高了膜通量,这是由于混凝有效地去除小分子疏水性有机物的缘故.研究表明,膜通量的下降与膜截留疏水性有机物的多少有密切关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号