首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了进一步深入分析煤体内部的孔隙结构特征,利用美国康塔Autosorb-iQ全自动比表面和孔径分布分析仪,实验研究了煤粒(同种煤不同粒径)的吸附等温线,并对其微观结构特征参数---比表面积、孔容及平均孔径进行了分析。研究表明:不同粒径煤粒吸附等温线呈现出相似的变化趋势;随着煤粒粒径的增大,煤粒的比表面积和总孔容逐渐减小,而平均孔径增大。研究结果为煤体瓦斯的吸附、解吸及渗流等机理的研究提供了一定的理论基础。  相似文献   

2.
不同煤体结构煤的吸附性能及其孔隙结构特征   总被引:10,自引:0,他引:10       下载免费PDF全文
煤的吸附能力是决定煤层含气量的重要参数。采用沁水盆地东南部赵庄井田二叠系山西组3号煤4个不同煤体结构的高煤阶煤样,通过等温吸附试验分析了不同煤体结构煤样在不同温度和压力下的吸附性能;同时对不同煤体结构煤样进行了低温液氮吸附实验,分析了不同煤体结构煤的孔隙结构特征,从煤体孔隙结构层面分析了不同煤体结构煤的吸附控制机理。结果表明:煤样升压吸附符合Langmuir等温吸附方程,饱和吸附量随煤体破坏程度的增加而增高,随着温度的增高而降低。随着煤体破坏程度的增高,孔容和比表面积也相应增大,孔容主要由中孔贡献,比表面积主要由微孔贡献,糜棱煤的孔容和比表面积在不同孔径阶段均最大,其次为碎粒煤、碎裂煤和原生结构煤;低温液氮吸附实验结果与等温吸附试验反映一致规律,这些说明,在同一地质条件下,煤体结构破坏越严重的地区煤层含气量越高。  相似文献   

3.
基于小角X射线散射构造煤孔隙结构的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究不同变形程度构造煤的孔隙结构特征,采用小角X射线散射(SAXS)和低温氮吸附相结合的方法,分析了重庆中梁山南矿不同类型构造煤的孔径、孔体积、比表面积和表面分形维数等参数的变化规律。SAXS研究结果表明,随着煤的变形程度增强,X射线散射强度增大,煤中微孔比例增加,最可几孔径减小,孔隙表面分形维数增大,这与低温氮吸附的结果一致。但由于两种方法的测试原理不同,SAXS所测孔隙比表面积高出低温氮吸附结果 1~2个数量级。  相似文献   

4.
针对同一变质程度软/硬煤的比表面积和总孔容积相差数倍,但其对甲烷吸附量却相当这一现象,根据热力学原理及煤对甲烷吸附机理,建立了煤的孔径对甲烷吸附层厚度的方程,数值分析了吸附压力和孔径对吸附层厚度(吸附层数)的影响,同时采用软/硬煤的孔径分布拟合函数,数值计算了软/硬煤的瓦斯等温吸附曲线,并与实测结果进行了对比分析。研究结果表明:基于吸附层厚度理论,在同一吸附平衡压力下,甲烷吸附层厚度随着孔径增大呈负指数变化,即煤体对甲烷的吸附是不同分子层的集合。采用煤体中孔径与其孔体积的分段函数和煤对甲烷的吸附层厚度理论,计算得到的瓦斯吸附等温线无论是变化趋势还是定量上均与实测结果一致,误差小于6.5%。因而,吸附层厚度理论很好地揭示了软/硬煤对甲烷吸附特征。由此,只要测得煤的孔径分布特征,即可采用吸附层厚度理论对其吸附量进行计算,为预测煤层瓦斯含量提供新方法。  相似文献   

5.
《煤炭技术》2017,(11):139-141
为研究煤体孔隙结构特征,实验室采用液氮静态吸附法对马兰8#煤、振兴二矿2#煤、润宏矿3#煤的3种煤样的孔隙结构特征开展了煤样颗粒比表面积、孔径、孔容等研究。结果显示,孔隙发育程度大小顺序依次为:振兴2#煤>润宏3#煤>马兰8#煤,且孔隙以微孔和中孔为主。该研究可为研究煤层瓦斯赋存及流动规律提供参考依据。  相似文献   

6.
赵海波 《煤矿安全》2023,(5):205-210
为了研究煤体浸水后的孔隙结构和氧化自燃特征,将长焰煤制备成含水率为4%~20%的水浸煤,采用全自动比表面积分析仪和同步热分析仪分析原煤及水浸煤的孔隙结构特征和热失重规律,得到原煤及水浸煤的特征温度,并通过动力学分析计算出表观活化能。结果表明:随着煤中含水量的增多,煤比表面积和平均孔径逐渐增大,同时,高位吸附温度和干裂温度逐渐增大,即30~125℃内,水分对煤氧反应的抑制作用占主导地位;当温度超过125℃后,水浸煤的质量最大值温度和燃点温度均低于原煤;煤中水分蒸发,水浸煤的较大孔隙有利于氧气吸附,主要表现为促进作用,且含水率为12%的煤样的表观活化能最小,促进效果最佳。  相似文献   

7.
为了揭示声震法提高煤层气抽采率的微观机理,通过扫描电镜、比表面积及孔径分析仪、核磁共振分析仪,试验研究了超声波处理对煤微观结构的影响。试验研究表明:超声波的机械振动效应能清洗干净含水煤体表面及裂隙通道中的微颗粒,打开煤中的封闭孔,局部破碎松软煤体,产生新的裂隙;超声波处理后,煤的总孔容、比表面积、平均孔径、孔隙率增大,T_2谱峰值增大、煤孔裂隙连通性增加,有利于煤层气的解吸、扩散和渗流;超声波处理后,煤对N_2吸附量增加,吸附与解吸过程存在吸附滞后现象,形成较大的滞后环,滞后环属于类型C;煤的孔隙、裂隙结构受超声波空化效应、机械振动效应和热效应的影响。研究内容为声震法提高煤层气抽采率提供了依据。  相似文献   

8.
《煤矿安全》2017,(12):5-8
为研究不同软硬煤的微结构差异性特征,以山西潞安王庄煤矿为工程背景,针对6种不同软硬煤样,采用电镜扫描(SEM)分析了表面形貌特性,并结合低温液氮吸附法研究了软硬煤的孔隙结构特征,对不同变质变形程度煤样的微结构差异性进行了对比分析。研究结果表明:构造变形对软煤的表面结构有显著影响,软煤较对应的硬煤表面更粗糙,拥有更复杂的表面孔隙结构;煤化作用对孔隙结构具有差异显著,煤的孔径随变质程度的增加而逐步变小;孔总比表面积随煤化程度的加深而变大,所有煤样微孔比表面积所占比例均超过了60%,比表面积主要由微孔贡献;软煤的平均孔径始终小于对应的硬煤,而孔比表面积始终大于相应的硬煤;构造变形使得煤体结构变得更复杂,构造软煤具有超前演化特征。  相似文献   

9.
《煤矿安全》2017,(9):1-4
为了分析研究粒度对煤孔隙特征的影响,采用收集某矿煤样分别破碎筛分出3个不同粒径煤粒进行压汞实验。结果表明:阶段孔体积的分布曲线符合高斯函数,阶段比表面积的分布曲线符合Power函数;孔体积与比表面积具有相关性,其相关性随着孔径的增加而不断减小,进而分析了造成该现象的原因是由于煤样中存在微裂隙的影响;粒度影响煤粒孔体积的本质原因是煤样粒度改变了粒间孔体积大小,而粒内孔体积几乎不随粒度的改变而改变;孔直径小于1 000 nm的煤体孔隙孔体积和孔比表面积均具有明显的分形特征。  相似文献   

10.
为探讨煤颗粒在溶剂中的溶胀作用对煤浆体系表观黏度的影响,研究了溶剂、煤油比、溶胀时间、温度等因素对溶胀作用的影响.通过考察煤颗粒粒度分布变化以探讨煤溶胀前后的表面结构变化;利用旋转黏度计定量考察了溶胀作用对煤浆表观黏度及流变特性的影响程度.结果表明:温度升高溶胀作用增强,煤中各显微组分对煤浆体系的黏度变化有影响;溶胀作用使煤粒粒径增大,使煤粒在体系中所占体积增大,从而增大了煤浆的有效体积浓度,导致煤浆体系黏度增大;通过BET表征发现,经溶胀后煤的孔径扩大,比表面积减小.  相似文献   

11.
为研究含瓦斯煤物质组成成分和孔隙结构参数对煤吸附能力的影响,采用压汞试验测试了5种煤样的孔隙结构,并研究了含瓦斯煤比表面积、平均孔径、孔隙度和分形维数等4种孔隙结构参数,分析了含瓦斯煤物质组成成分和孔隙结构参数对瓦斯吸附能力的影响。研究表明:水分、挥发分、比表面积与瓦斯极限吸附量(V_L)呈二次函数关系,灰分和V_L呈负相关,平均孔径和孔隙度与V_L呈正相关。Langmuir压力(P_L)随着灰分和挥发分的增大而增大,随平均孔径和孔隙度的增大而减小,且与比表面积呈二次函数关系。煤样在不同压力阶段具有不同分形特征,因此具有不同的分形维数D_1(r10nm)和D_2(r10nm)。D_1和D_2均大于2.9,分形特征明显。V_L随着D_1的增大而增大,随着D_2的增大而减小。分形维数与P_L的关系不明显。  相似文献   

12.
煤体孔隙结构研究主要侧重于某一种孔隙结构测定技术方法,而单一测定方法在原理上不能准确表征煤体多尺度孔裂隙结构特征。在分析压汞法、液氮吸附法、二氧化碳吸附法以及小角X射线散射法4种试验方法的试验原理、适用条件和煤体物性特征基础上,提出了基于数据融合的煤全孔径孔隙结构集成测定和表征方法。采用新方法从孔隙形状、孔容、比表面积、孔径分布4个方面,研究了2种不同变质程度软硬煤孔隙结构的差异性。结果表明:煤全孔径孔隙结构集成测定和表征方法融合了上述4种方法测定孔隙结构的优势,结果更可靠、合理; 2种煤样的软煤总孔容大于硬煤,软硬煤大孔孔容所占比例最大,且两者阶段孔容的差异性主要在于中孔和大孔阶段,其中中孔差距最为明显。而软煤微孔孔比表面积远大于硬煤。构造作用对于高变质程度煤的中孔孔容发育影响最大,对于低变质程度煤的大孔孔容发育影响最大;构造作用对于低变质程度煤的微孔表面积影响较小。上述研究成果为开展煤体多尺度孔隙的瓦斯吸附、运移规律和机理研究奠定了物性基础。  相似文献   

13.
为探究脉冲超声对煤体孔隙结构及瓦斯解吸特性的影响,利用全自动压汞仪和自主研发的脉冲超声激励煤吸附解吸瓦斯实验系统,分析不同脉冲次数超声激励前后煤体孔容、比表面积及瓦斯解吸量变化,研究脉冲超声激励对煤体孔隙结构特征及瓦斯解吸的影响。实验结果表明:随着脉冲超声次数增加,中大孔孔隙连通程度明显增大,微小孔孔隙连通程度无显著变化,仍以半封闭孔和封闭孔为主;各孔径段孔容和比表面积均有所增加,其中中大孔孔容与微小孔比表面积增加最为显著;脉冲超声激励后的煤体具有明显分形特征,且分形维数随脉冲次数的增加呈下降趋势;脉冲次数增加,煤体瓦斯解吸量增多,解吸速率加快,且最大解吸量、最大解吸速率与脉冲次数均呈线性正相关关系。实验表明脉冲超声使煤体原生孔隙得到有效改善,孔隙之间相互连通,促进了瓦斯解吸。  相似文献   

14.
为了掌握软煤体吸附瓦斯的影响因素变化特征,基于数理统计和层次矩阵法,建立了正交试验方案,运用压汞仪及HCA型高压容量法吸附装置,研究软煤体孔径结构特征及多因素(温度、水分、粒径)影响条件下软体煤吸附瓦斯过程的差异性变化。试验结果表明,软煤的中孔孔容为0.017 2 cm3/g,小孔孔容为0.009 1 cm3/g,其数值均大于原生结构煤样,软煤总孔容是原生结构煤样的2.16倍,微孔孔容是原生结构煤样的3.26倍。软煤体吸附瓦斯受多个因素影响,但影响程度不同,对同一煤阶,粒径对软煤体吸附常数a的影响程度最大,温度次之,水分影响程度最小;水分对软煤体吸附常数b的影响程度最大,粒径次之,温度影响程度最小。  相似文献   

15.
不同煤种微孔隙特征及其对突出的影响   总被引:1,自引:0,他引:1  
为了考察不同煤种微孔隙特征及其对突出的影响,对不同变质程度的煤样进行低温氮吸附试验,分析了不同变质程度煤吸附等温线及吸附回线的类型,并划分为Ⅰ型、Ⅱ型和Ⅲ型,测定了煤中微孔形态及微孔隙分布随煤变质程度变化的关系,并讨论了微孔形态及其分布对突出的影响.结果表明,随着煤变质程度增加,煤中微孔形状由大孔变为小孔,由封闭孔变为开放孔,且特殊形状的细颈瓶状孔也有所增加,微孔数量也随之增加,导致比表面积增大,吸附瓦斯增多.但微孔扩散不畅,易诱发突出.突出煤体具有Ⅲ型等温线特征.  相似文献   

16.
《煤矿开采》2017,(6):88-91
为研究不同破坏类型煤体结构差异性及其对瓦斯吸附的影响,以山西沁水煤田王庄煤矿3号煤层为工程背景,测试了4种不同破坏类型煤样的瓦斯吸附性能;采用低温液氮吸附法分析了不同破坏类型煤样的孔隙结构特征,通过FHH公式计算了煤体孔隙分形维数,并针对不同变形破坏程度煤的结构差异性进行了对比分析。结果表明:不同破坏类型煤样的瓦斯吸附能力差异显著,煤样的Langmuir体积VL从24.34cm~3/g增加到36.16cm~3/g,煤体破坏程度的增加有利于瓦斯吸附;不同破坏类型煤样的孔隙结构差异显著,煤样中值孔径变化范围为13.54~28.37nm,总比表面积在0.389~0.965m~2/g之间变化,分形维数值在2.389~2.682之间变化;总体来看,随煤体破坏程度的增加,煤孔径减小,孔比表面积增加,孔隙结构趋于复杂化,煤体拥有更强的吸附能力。  相似文献   

17.
通过对不同煤体结构的低温氮吸附实验发现,各孔径段的孔容比与比表面积比是不对应的,特别是微孔的孔容较小,但是比表面积较大。与原生结构煤相比,共生构造煤在各阶段孔容和比表面积都有所增加。煤储层孔隙是瓦斯的主要聚集场所,而且也是其运移通道;孔隙结构不仅制约着煤体的瓦斯含量,而且对解吸和扩散也有重要影响。  相似文献   

18.
高宇  刘佳  秦跃平 《煤矿安全》2023,(7):109-117
采用煤粒进行瓦斯吸附实验是研究煤基质瓦斯流动机理的基本手段。为探究煤粒形状对煤体瓦斯吸附规律的影响,设计煤粒瓦斯恒温定压吸附实验,得到4种粒度的煤样在不同瓦斯压力下的吸附特征。基于煤基质游离瓦斯密度梯度扩散理论,分别建立圆柱形和球形煤粒瓦斯定压吸附数学模型,并通过有限差分法进行编程解算,后用实验数据来验证模拟结果。发现将煤粒视作球形和圆柱形得到的模拟结果均与实验结果匹配程度较高,证明了煤基质游离瓦斯密度梯度扩散理论的准确性和可靠性;煤样粒径增加时,微孔道扩散系数增大;瓦斯吸附压力对微孔道扩散系数的影响较小,微孔道扩散系数摆脱对瓦斯吸附压力和吸附时间的依赖;相对来说,煤粒的形状对瓦斯吸附数学模型的预测精度影响不大,但2种模型的微孔道扩散系数存在显著差异;当瓦斯吸附压力与煤样粒径固定时,圆柱形煤粒的微孔道扩散系数大于球形煤粒的微孔道扩散系数,约为2倍,主要是由于2种形状有效扩散截面积的差异性。  相似文献   

19.
采用低温液氮实验对研究构造煤的纳米级孔隙结构特征,并利用等温吸附实验解释构造煤纳米孔隙与瓦斯吸附能力的关系。研究结果表明:3种煤样不同孔径孔容和比表面积都有所增加,约在50 nm孔径出现峰值,得出纳米孔隙是煤对瓦斯吸附强度的决定因素。相对于原煤,构造煤吸附瓦斯量略有增加,相对于同层共生原煤,构造煤吸附能力的变化主要取决于纳米级孔隙的变化,其纳米级孔隙微孔的比表面积是影响瓦斯吸附量的主要因素。  相似文献   

20.
为了研究构造煤储层结构特性,以山西潞安常村煤矿为研究对象,针对4种不同破坏类型的构造煤,通过压汞法测试了微观孔隙结构特征,并分析了其影响因素。研究结果表明:不同变形程度的构造煤孔隙结构差异显著,微孔和过渡孔的比表面积分别在2.473 4~4.254 2 m~2/g、0.893 2~1.708 9 m~2/g范围内变化;构造作用使得煤中的大孔和中孔数量大量减少;随煤层埋深和破坏程度的增加,煤体平均孔径和孔隙率均呈现出先慢后快的非线性变化特征,煤体孔径持续减小,微孔所占比例持续增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号