首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探讨兴隆庄煤矿下组煤开采水文地质特征及涌水量变化规律,以首采区为地质背景,分析和评价了影响开采的主要含水层、隔水层及其充水通道,得出下组煤开采时直接充水水源为太原组第十下层灰岩含水层,间接充水水源为本溪组第十四层灰岩含水层和奥陶系灰岩含水层;同时采用大井法和比拟法对下组煤开采时的涌水量进行了预测,计算结果表明十下灰正常涌水量为349 m3/h,最大涌水量为418.8 m3/h;十四灰正常疏降涌水量为40 m3/h,最大涌水量为48 m3/h。  相似文献   

2.
针对慈林山煤矿的涌水问题,通过地质勘探研究煤矿水文地质条件,使用大井法和水文地质比拟法的科学计算方法预测矿井涌水量。结果表明,慈林山煤矿9号煤层开采的主要充水水源是第四系松散层潜水含水层和3号煤采空区积水,导水通道是煤层开采形成的垂向导水裂缝带。15号煤开采时主要充水水源为K2灰岩水和3号煤、9号煤采空区积水,导水通道是煤层开采形成的垂向导水裂缝带、断层及陷落柱。预测9号煤开采时正常涌水量为62.5m3/h,最大涌水量为137.5m3/h;15号煤开采时正常涌水量为97.0m3/h,最大涌水量为142.5m3/h。鉴于采空区积水具有突发性强、水量大、来势猛、破坏性大且有腐蚀性等特点,采用井下疏放水方案对采空区积水进行防治,为采掘工作安全开展提供保障。  相似文献   

3.
棋盘井煤矿水文地质特征分析及涌水量计算   总被引:1,自引:0,他引:1  
吕汉江 《煤矿安全》2014,(7):155-158
分析了棋盘井煤矿水文地质特征,确定了井田西区9#、16#煤的直接充水水源是9#煤自身老空水及石炭系上统太原组~二叠系下统山西组第二岩段直接顶板含水层水,奥陶系中统桌子山组灰岩水为威胁最大的潜在充水水源,顶板导水裂缝带、底板原始导升带、疑似陷落柱、断层及封闭不良钻孔为主要充水通道,井田东区除不存在奥陶系中统桌子山组灰岩水外,充水因素与西区一致。基于不同出水点出水机理的差异,采取对固定水量和变化水量采用不同的涌水量计算方法预测了西区矿井正常涌水量为244.5 m3/h,最大涌水量为440.7 m3/h。  相似文献   

4.
河南薛湖煤矿在开采过程中受到了水害的影响,为了确保煤矿安全、高效生产,分析了矿井水文地质条件,研究了矿井冲水的主控因素,并对矿井涌水量进行预测计算。研究结果表明,薛湖煤矿矿区发育六大含水层(组)和三大隔水层(组),煤系地层的二叠系砂岩裂隙含水层是危害矿井生产的主要含水层,随着生产的进行,顶板砂岩水多被疏干,对生产的安全不会造成很大的影响。二2主采煤层的直接充水水源为二叠系二2煤层顶板砂岩裂隙承压水,间接充水水源为二2煤层底板和奥陶系灰岩岩溶裂隙承压水,矿井的自身采空区积水是薛湖矿的充水水源之一。二2煤的导水途径主要有裂隙、断层和封闭不良钻孔3种,高角度正断层可能成为导水通道。越往深部开采水压将会越大,构造和裂隙的发育增加了底板水涌入矿井的危险。选取比拟法和稳定流解析法对采区矿井涌水量进行计算,比拟法计算的全矿井正常涌水量656 m 3/h、最大涌水量787 m 3/h比较符合近年来矿井充水的实际情况,可以作为下一步矿井开采的依据。但随着开采水平的不断延深,太灰岩溶水向矿井突水的概率也将大大提高,若出现短期内多点突水情况,将会超过比拟法预算的最大涌水量。  相似文献   

5.
翁荔玉  年宾 《中州煤炭》2015,(2):113-115
为了更合理地开展矿井水害防治工作,分析了青东矿矿井充水因素,并采用水文地质比拟法预计矿井的涌水量。研究表明:充水水源主要有第四系松散层第四含水层和主采煤层顶底板砂岩裂隙含水层,太原组岩溶裂隙含水层是潜在突水水源;充水通道主要有采动垮落带、导水断层及构造裂隙;矿井正常涌水量为410 m3/h,最大涌水量为590 m3/h。研究结论可作为矿井疏排水设计的依据。  相似文献   

6.
通过对井田边界条件、主要含水层的富水特征、断层的水文地质特征以及地下水的补给、径流及排泄条件的分析研究,认为二1煤层顶板的直接充水水源为顶板砂岩裂隙水,底板的直接充水水源为石炭系太原组上段石灰岩岩溶裂隙水,底板的间接充水水源为石炭系太原组下段灰岩岩溶裂隙水和寒武系白云质灰岩岩溶裂隙水;矿井充水通道为顶板砂岩、底板灰岩的裂隙和断层带。采用大井法对二1煤层-400m水平的矿井涌水量进行了预算:正常涌水量为270m3/h,最大涌水量为540m3/h。认为计算的涌水量是可靠的,可作为煤矿建井设计和水害防治的依据。  相似文献   

7.
新集一矿1煤组开采充水因素分析   总被引:1,自引:0,他引:1  
通过对新集一矿井田水文地质条件、充水水源、充水通道的分析研究,认为开采1煤组的直接充水水源为顶板砂岩裂水和底板太原组上段1~5灰的石灰岩岩溶裂隙承压水,主要充水通道是断层、顶底板岩石的原生裂隙和采动裂隙、矿压扰动裂隙带.采用单面进水集水廊道法、“大井”法、经验估算法和矿井实测法,对1煤-700 m水平的矿井涌水量进行了预算,矿井正常总涌水量为683 m3/h,最大涌水量为1 080 m3/h,确定矿井水文地质类型为中等偏复杂类型.  相似文献   

8.
以巴愣矿井为例,分析了矿井水文地质特征,矿区内共有5个含水层和3个隔水层,水文地质边界有两类:一是断层(北、东、南),二是西边界煤层露头;白垩系下统志丹群含水层,侏罗系中统直罗组含水层,侏罗系中统延安组含水层为直接充水水源;矿井充水通道,主要为煤层采空导致顶板岩层冒落形成的导水裂隙带。采用大井法计算了矿井涌水量,延安组砂岩含水层涌水量438m3/h,志丹群含水层涌水量142 m3/h,合计580 m3/h。其中,延安组含水层涌水量438 m3/h,可作为矿井正常涌水量,两个含水层的合计涌水量580 m3/h,可作为矿井最大涌水量。  相似文献   

9.
123下02工作面位于济宁三号矿十二采区东部,受孙氏店支断层与多煤层开采重复扰动的影响,工作面充水条件变得更为复杂。为了制定有效的防治水措施,保障工作面安全回采,需要对工作面涌水量进行预计。在对工作面充水水源,工作面导水通道特别是导水裂隙带发育情况进行分析后,为提高计算结果的准确性,根据矿井水文地质资料选取合适的水文地质参数后,针对含水层性质及充水水源不同,对工作面范围内的含水层采用不同的方法进行分层分部计算,采用解析法计算工作面上部含水层的涌水量,采用比拟法计算奥灰水对工作面侧向补给量,最终计算得到工作面正常涌水量158.6 m3/h,最大涌水量237.9 m3/h。  相似文献   

10.
韩志远 《煤炭技术》2023,(6):108-111
为了解决芦子沟煤矿10#煤层存在的水文地质问题,保障煤矿开采安全进行。对芦子沟煤矿水文地质条件进行了勘查。本井田充水水源主要有大气降水、地表水、煤系围岩含水层水、奥陶系灰岩岩溶裂隙水及采空区积水等。矿井开采主要水患为奥灰岩溶水、采空区积水。按实际生产300 d/a计算,出煤为3 000 t/d,使用富水系数比拟法,估计本矿投产后10#煤层矿井正常涌水量约120 m3/h,最大涌水量达到150 m3/h。对矿井直接充水水源、地表水、奥灰岩溶水、采空区积水防治措施进行了阐述。  相似文献   

11.
针对小屯煤矿开采7煤层受到矿井突水威胁的现状,在计算导水裂缝带高度及底板突水系数的基础上,确定小屯煤矿开采7煤直接充水因素为顶板龙潭组灰岩含水层和砂岩含水层,间接充水因素为底板茅口灰岩含水层。在考虑开采7煤上覆含水层静态储量释放的基础上,采用大井法对顶板动态水量进行了计算,并建立了以断层为通道的底板断层突水量计算模型,预测了小屯煤矿开采7煤矿井正常涌水量和最大涌水量。  相似文献   

12.
放顶煤开采时其导水裂隙带发育高度大于煤层顶板到白垩系宜君组含水层底部距离,在工作面薄弱处可能波及至洛河组含水层,工作面面临顶板水害威胁。对此,利用"大井法"进行工作面涌水量计算,考虑回采安全,正常涌水量按400 m3/h、最大涌水量按800 m3/h进行工作面水仓及排水系统的设计。  相似文献   

13.
龙泉井田主要含煤地层为石炭系太原组,4号煤层为首采煤层。通过分析,认为对4号煤层开采系统有充水影响的主要水源为二叠系下统山西组及下石盒子组含水层。在有断层、陷落柱等导通的情况下,太原组灰岩水及奥陶系灰岩水会对煤层产生间接充水。预测开采4号煤层时正常涌水量为13 203 m3/d,并提出了开采4号煤层的主要水害防治措施。  相似文献   

14.
矿井水害严重威胁煤矿安全生产,针对兴荣煤矿受水害影响严重的情况,在了解矿区水文地质条件的基础上,对矿区充水条件及充水因素进行分析,结果表明:影响兴荣煤矿安全开采的含水层系主要为煤层底板茅口组灰岩含水层,以及顶部P3c+d裂隙含水岩组,矿井充水通道主要由采面、掘面扰动后形成的顶板裂隙发育、原生断裂裂隙发育和区域性封闭不良钻孔组成,这些充水通道受构造影响相对较大,矿井在未来开采至+1150m标高时,预计矿井正常涌水量为24.33m3/h,最大涌水量为43.80m3/h。  相似文献   

15.
在煤矿开采时,一部分地下水由于矿井开采而流出,为了煤矿安全开采,对地下水要通过排水系统排出地面。通过对矿井涌水量预算,可以为矿井排水及水害防治提供较可靠的理论依据。通过对海孜煤矿(西部井)矿井涌水量的预算,得出了海孜煤矿(西部井)最终矿井涌水量,并对参数选取及过程进行了分析,取得了较可靠的预算结果。预算新生界松散层第四含水层(组)涌水量为90.77m~3/h;主采煤层顶底板砂岩裂隙水正常涌水量为30m~3/h,最大涌水量为62m~3/h。太灰岩溶裂隙含水层(段)的可能涌水量为363m~3/h,此涌水量不计入矿井正常涌水量,但此水量应作为灾变水量一部分,灾变水量为363+87=450(m~3/h)。  相似文献   

16.
南屯煤矿下组煤-432水平涌水特征简析及综合防治   总被引:1,自引:0,他引:1  
南屯井田位于兖州向斜南翼,为一走向近东西,第四系覆盖的全隐蔽式井田,太原组16上煤和17煤开采的直接充水含水层为十下灰岩,间接充水含水层为十四灰和奥陶系灰岩含水层。奥陶系灰岩水位高、水压大,使奥陶系岩溶承压水成为威胁下组煤开采的主要突水水源。  相似文献   

17.
华北石炭-二叠系煤田顶板石炭-二叠系砂岩含水层通常以静储量为主,是众多华北矿井的直接充水含水层。多年来,勘查和生产单位一直在探索实用、可靠的顶板涌水量预测方法。以沁水煤田南部某新建矿井为例,探讨了华北石炭-二叠系煤层顶板砂岩裂隙水涌水量预测方法。应用承压-无压稳定流大井法计算的工作面正常涌水量为23.9 m3/h,用富水系数法计算的涌水量为28.2 m3/h,利用定降深非稳定流大井法计算的工作面最大涌水量为85.76 m3/h。研究表明:稳定流大井法适于勘查阶段或资料较小时的涌水量估算,预测精度较低;富水系数法更适于含水层以静储量直接充水的工作面或矿井,预测结果更可靠;非稳定流大井法适于预测顶板涌水过程和最大涌水量。  相似文献   

18.
《煤炭技术》2017,(3):144-146
基于矿井水文地质资料,通过对金源里井工矿水文地质条件等进行分析,详细地论述了含水层类型,分析了矿井主要充水因素。同时,采用大井法对矿井涌水量进行了计算预测,矿井正常涌水量775 m3/h,矿井最大涌水量950 m3/h。分析结果为该煤矿的防治水工作提供了技术支持。  相似文献   

19.
《煤炭技术》2016,(7):90-91
在分析含水层、隔水层及含水层水力联系等水文地质特征基础上,采用大井法对直接顶板十下灰含水层放水量进行了预计,利用单位涌水量及疏降水深度,对底板十三灰含水层及奥灰含水层疏水量进行了预计,给出了矿井正常涌水量和最大涌水量。  相似文献   

20.
本文以大桥沟煤业水文地质情况为背景,对矿井的充水因素的进行了分析,并对矿井的涌水量进行了预测,8号煤层生产能力达到90万t/a时的正常涌水量为9.21m3/h,最大涌水量为14.84m3/h.9、10、11号煤层生产能力达到90万t/a时的正常涌水量为9.21m3/h,最大涌水量为14.84m3/h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号