首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The involvement of metabotropic glutamate receptors (mGluRs) in hippocampal long-term potentiation (LTP) is a matter of controversial debate. Using [Ca2+]i measurements by confocal laser scanning microscopy and field recordings of EPSPs (fEPSPs) in the hippocampal CA1-region, we found that the efficacy of the broad-spectrum mGluR-antagonist (S)-alpha-methyl-4-carboxyphenylglycine (MCPG) and of (S)-4-carboxy-phenylglycine (4-CPG), a selective antagonist at class I mGluRs, in LTP is contingent on the tetanization strength and the resulting [Ca2+]i response. As indicated by experiments in which we blocked voltage-dependent calcium channels (VDCCs) and intracellular Ca2+ stores (ICSs), the functional significance of class I mGluRs in LTP is confined to certain types of potentiation, which are induced by weak tetanization protocols and require the release of Ca2+ from ICSs for induction. During strong tetanic stimulation, this Ca2+ source is functionally bypassed by activating VDCCs.  相似文献   

2.
It has been demonstrated that prenatal protein malnutrition significantly affects hippocampal plasticity, as measured by long-term potentiation, throughout development. This paper focuses on the hippocampal dentate granule cell population response to two separate paradigms of tetanization of the medial perforant pathway in prenatally protein-malnourished and normally nourished adult male rats. The 100-pulse paradigm consisted of the application of ten 25-ms-duration bursts of 400 Hz stimulation with an interburst interval of 10 s. The 1000-pulse paradigm consisted of the application of five 500-ms bursts of 400 Hz stimulation with an interburst interval of 5 s. No between-group differences were obtained for input/output response measures prior to tetanization. No between-group, nor between-paradigm, differences were obtained in the degree of population EPSP slope enhancement. However, in response to both paradigms, prenatally malnourished animals showed significantly less enhancement of the population spike amplitude (PSA) measure than normally nourished animals. Normally nourished animals showed a significantly greater level of PSA enhancement in response to the 100-pulse paradigm than the 1000-pulse paradigm. Prenatally malnourished animals showed no significant differences in the degree of PSA enhancement between the two paradigms. Results indicate that short duration bursts (< or = 25 ms) are more effective in inducing maximal PSA enhancement in normally nourished rats than longer duration stimulus bursts. The apparent inability of prenatally malnourished rats to transfer enhanced cellular activation (population EPSP slope enhancement) into enhanced cellular discharge (PSA enhancement) suggests that a preferential enhancement of GABAergic inhibitory modulation of granule cell excitability may result from the prenatal dietary insult. Such potentiation of inhibitory activity would significantly lower the probability of granule cell population discharge, resulting in the significantly lower level of PSA enhancement obtained from these animals.  相似文献   

3.
To examine the role of tenascin (TN) in vivo, we have produced mice in which the TN gene is inactivated. In behavioral studies, TN-knockout mice showed abnormal behavior such as hyperlocomotion and poor swimming ability. Biochemical analysis revealed that serotonin (5-HT) and dopamine (DA) transmission was decreased in the cerebral cortex, the hippocampus, or the striatum of TN-knockout mouse brain. The intraperitoneal administration of the DA receptor agonist, LY171555 (0.5 mg/kg, BW), inhibited the hyperlocomotion, and swimming behavior was transiently improved by the treatment with the 5-HT receptor agonist, 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane hydrochloride. These findings suggest that TN may play an important role in neurotransmissions related to behavior.  相似文献   

4.
Healthy hair samples from golden hamsters were examined for the presence of dermatophytes and non-dermatophytes using baiting technique and direct inoculation. Thirty-four species and 2 varieties attributed to 17 genera were recovered. Paecilomyces variotii (isolated from 84.4% of the examined hair) and Aspergillus niger (81.3%) were the more frequent isolates on Sabouraud's dextrose agar (SDA) without cycloheximide. Our results have clearly demonstrated that the hair of hamster was free from true dermatophytes. Using the dilution plate method many fungal species were isolated from cage material (7 genera and 10 species + 1 variety); from faeces (10 genera and 17 species); from standard chow (3 genera and 6 species) of hamster. P. variotii which was the most frequent fungus in the preceding 3 substrates was completely absent in the presence of cycloheximide in SDA. The present study has demonstrated for the first time the isolation of Trichophyton rubrum from hamster faeces. Also, several saprophytic and cycloheximide resistant fungi were isolated. In the air of hamster cage Cladosporium cladosporioides, Penicillium chrysogenum, Alternaria alternata and Scopulariopsis brevicaulis were the most dominant species on SDA with or without cycloheximide. Using the agar diffusion method, Aloe sap, onion oil, garlic bulb extract and aqueous leaf extracts of Andropogon citratus, Euphorbia sp. and Ruta graveolens were tested for their antifungal activity on 10 fungal species. It was observed that onion oil exhibited a high inhibitory effect against most of the tested fungi.  相似文献   

5.
Spatial learning but not memory performance in the radial maze is disrupted by low doses of MK801 (0.0625 mg/kg ip), a noncompetitive N-methyl-{d}-aspartate receptor channel blocker (M. L. Shapiro and C. O'Connor, 1992). The effect of this low dose of MK801 on hippocampal physiology and synaptic plasticity was assessed in 16 behaving female Sprague-Dawley rats. The drug increased the frequency (0.5 Hz), marginally reduced the amplitude of hippocampal rhythmical slow wave activity (RSA), did not alter non-RSA slow wave activity, and reduced normal synaptic transmission from the entorhinal cortex to the dentate gyrus by ~8%. Independent of these effects on normal physiology, MK801 also reduced primed burst potentiation, a form of synaptic plasticity produced by physiologically patterned stimulation, by ~20% in the same pathway. Thus, low doses of MK801 may impair spatial learning by reducing, directly or indirectly, the likelihood of synaptic plasticity in the hippocampus. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
Activation of ACPD-sensitive metabotropic receptors induced differential effects on synaptic transmission and the induction of LTP in CA1 and the dentate gyrus of the hippocampus i.c.v. injections of (1.S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD] induced enduring potentiation of the fEPSP in CA1, which occluded tetanically induced LTP. In contrast, ACPD induced a dose-dependent biphasic effect on the fEPSP in the dentate gyrus, consisting of an initial short lasting potentiation, followed by enduring depression of the response, and blockade of LTP. These two effects are likely to be mediated by two different classes of the receptor as in the dentate gyrus the selective class I agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG) induced sustained potentiation of the fEPSP, whereas the mixed mGluR2 agonist-mGluR1 antagonist, (S)-4-carboxy-3-hydrophenylglycine((S)-4C3H-PG) induced only depression. Increasing the concentration of calcium directly in the dentate gyrus prior to, and in conjunction with, injections of ACPD induced sustained potentiation rather than depression. The differential effects indicate that the second messenger cascades the subtypes of receptors are linked with, mediate different forms of synaptic plasticity within the hippocampus and have important implications for their role in learning.  相似文献   

7.
Neuropeptide Y-Y2 receptor mRNA and binding were investigated after local injection of excitatory amino acid receptor agonists into the rat hippocampus. The general metabotropic glutamate receptor (mGluR) agonist (1S,3R)ACPD (200 and 400 nmol) and the group I mGluR agonist DHPG (50 nmol) enhanced Y2 receptor mRNA levels in granule cells (by up to 470%) and [125I]PYY(3-36) binding in mossy fibers. The group I mGluR antagonist 4-CPG (200 nmol) inhibited the action of (1S,3R)ACPD. On the other hand, AMPA and NMDA enhanced Y2 receptor expression only at neurodegenerative doses (> 0.3 and 3 nmol, respectively). It is suggested that seizure-induced Y2 receptor expression in granule cells may be mediated by group I mGluRs.  相似文献   

8.
Long-term potentiation (LTP) of excitatory transmission is an important candidate cellular mechanism for the storage of memories in the mammalian brain. The subcellular phenomena that underlie the persistent increase in synaptic strength, however, are incompletely understood. A potentially powerful method to detect a presynaptic increase in glutamate release is to examine the effect of LTP induction on the rate at which the use-dependent blocker MK-801 attenuates successive N-methyl-D-aspartic acid (NMDA) receptor-mediated synaptic signals. This method, however, has given apparently contradictory results when applied in hippocampal CA1. The inconsistency could be explained if NMDA receptors were opened by glutamate not only released from local presynaptic terminals, but also diffusing from synapses on neighboring cells where LTP was not induced. Here we examine the effect of pairing-induced LTP on the MK-801 blocking rate in two afferent inputs to dentate granule cells. LTP in the medial perforant path is associated with a significant increase in the MK-801 blocking rate, implying a presynaptic increase in glutamate release probability. An enhanced MK-801 blocking rate is not seen, however, in the lateral perforant path. This result still could be compatible with a presynaptic contribution to LTP in the lateral perforant path if intersynaptic cross-talk occurred. In support of this hypothesis, we show that NMDA receptors consistently sense more quanta of glutamate than do alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. In the medial perforant path, in contrast, there is no significant difference in the number of quanta mediated by the two receptors. These results support a presynaptic contribution to LTP and imply that differences in intersynaptic cross-talk can complicate the interpretation of experiments designed to detect changes in transmitter release.  相似文献   

9.
We investigated the effect of high-frequency stimulation of the basolateral amygdala (BLA) on the induction of long-term potentiation (LTP) in the medial perforant path (PP)-dentate gyrus (DG) synapses of anesthetized rats. A conditioning stimulation (100 pulses at 100 Hz) of the ipsilateral BLA did not change the DG synaptic potential. However, when the BLA conditioning stimulation was applied at the same time as a weak tetanic stimulation of PP (20 pulses at 20 Hz) which alone did not induce LTP, robust DG LTP was induced. Simultaneous application of contralateral BLA stimulation and PP weak tetanus did not induce LTP. Moreover, the ipsilateral BLA stimulation enhanced the magnitude of LTP induced by a moderate tetanic stimulation of PP (30 pulses at 60 Hz), but did not further enhance the LTP induced by a strong tetanic stimulation of PP (100 pulses at 100 Hz). These results suggest that the ipsilateral BLA neurons modulate the induction of DG LTP in vivo.  相似文献   

10.
We have recently reported that mice homozygous (Cr-/-) for a null mutation in the calretinin gene have impaired long-term potentiation (LTP) induction in the dentate gyrus (S. Schurmans et al. (1997) Proc. Natl. Acad. Sci. USA, 94, 10415 ). Here, we investigated dentate LTP induction in mice heterozygous (Cr+/-) for the same mutation. Despite the presence of calretinin in neurons of these mice, although at reduced levels as compared with normal mice, LTP induction in dentate gyrus was totally impaired. Spatial memory and learning were found unaffected in Cr+/- mice, such as in Cr-/- mice. Altogether, our results suggest that calretinin is a critical component in the control of dentate synaptic plasticity in mice, and that levels of calretinin higher than those observed in Cr+/- mice are required to induce LTP in this area. The possible mechanisms leading to the absence of correlation between gene dosage and biological effects are discussed.  相似文献   

11.
We have investigated the role of metabotropic glutamate receptors (mGluR) in the induction of homosynaptic long-term depression (LTD) and depotentiation (DP) in the dentate gyrus of the adult rat. Perfusion of the mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) for a prolonged period (20 min) induced long-term depression (LTD) of field excitatory postsynaptic field potentials (epsps) from the baseline level and also depotentiation (DP) from the long-term potentiated level. Both the ACPD-and the low frequency stimulation (LFS)-induced LTD and DP were inhibited in the presence of the mGluR antagonist (+)-alpha-methyl-4-carboxyphenylglycine (MCPG), demonstrating the necessity for the activation of metabotropic glutamate receptors in the induction of LTD/DP. The LFS and ACPD-induced LTD were independent of the activation of N-methyl-D-aspartate (NMDA) receptors, as they were not blocked by the NMDA receptor antagonist D-2-amino-5-phophonopentanoate (AP5).  相似文献   

12.
Long-term potentiation (LTP), a cellular model of learning and memory, requires calcium-dependent protein kinases. Induction of LTP increased the phosphorus-32 labeling of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPA-Rs), which mediate rapid excitatory synaptic transmission. This AMPA-R phosphorylation appeared to be catalyzed by Ca2+- and calmodulin-dependent protein kinase II (CaM-KII): (i) it correlated with the activation and autophosphorylation of CaM-KII, (ii) it was blocked by the CaM-KII inhibitor KN-62, and (iii) its phosphorus-32 peptide map was the same as that of GluR1 coexpressed with activated CaM-KII in HEK-293 cells. This covalent modulation of AMPA-Rs in LTP provides a postsynaptic molecular mechanism for synaptic plasticity.  相似文献   

13.
It has been demonstrated in the CA1 region of the hippocampus in vitro, and in the dentate gyrus and CA1 region in vivo, that application of the metabotropic glutamate receptor (mGluR) agonist, 1S, 3R-amino cyclopentane 2,3-dicarboxylic acid triggers a slow-onset potentiation of synaptic transmission in the hippocampus. This study examined the involvement of group 1 and 2 mGluRs in this phenomenon in the CA1 region of freely moving rats. Drugs were applied via the lateral cerebral ventricle, and measurements were obtained from the CA1 region via permanently implanted electrodes. The group 1 mGluR agonists, 3,5-dihydroxyphenylglycine (DHPG, 20-100 nmol/5 microl) and trans-azetidine-2,4-dicarboxylic acid (ADA, 100 nmol-1 micromol/5 microl) induced a dose-dependent potentiation of basal synaptic transmission. The mGluR antagonist R,S-alpha-methyl-carboxyphenylglycine (MCPG, 1 micromol), and the group 1 mGluR antagonist, S-4-carboxyphenylglycine (4CPG, 100 nmol) completely inhibited the effects of both DHPG and ADA. The group 2 mGluR agonist, (S)-4-carboxy-3-hydroxy phenylglycine (4C3H-PG, 50-200 nmol/5 microl) induced a dose-dependent decrease of basal synaptic transmission. These results suggest that in the CA1 region in vivo, slow-onset potentiation may be mediated by group 1 mGluRs.  相似文献   

14.
Neocortical preparations have proven highly resistant to the induction of long-term potentiation (LTP), and we have only recently determined the conditions sufficient for the induction of neocortical LTP in the adult, freely moving rat. The stimulation trains must be spaced and repeated over a period of days in order to reach asymptotic levels of potentiation. Here we show that, within these constraints, the neocortex is actually highly responsive. LTP could be induced with as few as one brief high frequency train per day or with extremely low-intensity stimulation trains. We also provide evidence for a critical role for N-methyl-D-aspartate (NMDA) receptor activation in LTP induction in this preparation, and demonstrate that this LTP is input-specific. Control pathways showed no potentiation effects. LTP was found in a monosynaptic and two polysynaptic components (average latencies to peak: 8.1, 15.2 and 20.0 ms) and in the superimposed population spikes. Although LTP could be induced with one train per day or with low-intensity trains, larger and longer-lasting potentiation effects could be induced by increasing the number of trains delivered per session, the number of sessions over which trains were delivered, or the pulse intensity of the trains. The LTP decayed slowly and was still evident 5 weeks later. Administration of the competitive NMDA antagonist 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid blocked the induction of LTP in a dose-dependent fashion and appeared to unmask a depression of both the population spikes and a polysynaptic component. These results indicate that the neocortex is highly sensitive to LTP induction procedures, as long as the stimulation trains are spaced and applied over a period of days. They are also consistent with the view that the neocortex must operate with a slow learning rate to reduce interference effects in memory.  相似文献   

15.
This research sought to test the presence and function of metabotropic excitatory amino acid receptors (mGluR) in the frog semicircular canal (SCC). The mGluR agonist +/- 1-aminocyclopentane-trans-1,3-dicarboxylate (ACPD) produced an increase in afferent firing rates of the ampullar nerve of the intact posterior canal. This increase was not due to a stimulation of cholinergic efferent terminals or the acetylcholine (ACh) receptor, since atropine, in concentrations which blocked the response to exogenous acetylcholine, did not affect the response to ACPD. Likewise, ACPD effects were not due to stimulation of postsynaptic NMDA receptors, since the NMDA antagonist D(-)-2-amino-5-phosphonopentanoate (AP-5) did not affect the response to ACPD, reinforcing the reported selectivity of ACPD for mGluRs. When the SCC was superfused with artificial perilymph known to inhibit hair cell transmitter release (i.e. low Ca-high Mg), ACPD failed to increase afferent firing. This suggests that the receptor activated by ACPD is located on the hair cell. Pharmacological evidence suggested that the mGluRs involved in afferent facilitation belong to Group I (i.e. subtypes 1 and 5). In fact, the Group III agonist AP-4 had no effect, and the ACPD facilitatory effect was blocked by the Group I mGluR antagonists (S)-4-carboxyphenylglycine (CPG) and (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA). Additional pharmacological evidence supported the presence of Group I mGluRs. Interestingly, the mGluR antagonists, AIDA and 4CPG, by themselves did not affect the resting firing rates of ampullar afferents. This may suggest that the mGluRs are not involved in resting activity but perhaps only in evoked activity (as suggested in Guth et al. (1991) Hear. Res. 56, 69-78). In addition, the mRNA for the mGluR1 has been detected in hair cells of both SCC, utricle, and saccule. In summary, the evidence points to an mGluR localized to the hair cell (i.e. an autoreceptor) which may be activated to produce a positive feedback augmentation of evoked but not resting transmitter release and thus affect afferent activity.  相似文献   

16.
17.
Extracellular levels of dopamine (DA) were measured in the central part (the central and intercalated nuclei) of the amygdala (AMY) using microdialysis at 20 min intervals before, during and after 1 h of feeding in 12 h food-deprived rats. The results were compared with the effects of peripheral injections of glucose or a low dose (200 mU) of insulin in non-deprived animals. Feeding caused a 130% increase in extracellular DA. Glucose resulted in an increase in DA levels (+86%). In contrast, insulin caused a decrease of DA (-50%) and metabolites. The results show that natural feeding is associated with an increase in DA turnover in the amygdala, and that peripheral glucose and insulin can affect DA metabolism in the amygdala presumably in response to changes in glucose utilization.  相似文献   

18.
Several forms of long-term potentiation (LTP), a putative cellular mechanism for memory storage, have been described in the hippocampus. In this review, I discuss the mechanisms of induction and expression of LTP at the Schaffer collateral synapses and at the mossy fiber pathway. The early biochemical steps responsible for LTP at these two pathways are well understood. However, future studies should transcend the study of signal transduction systems and focus on the identification of the synaptic proteins that experience activity-dependent modifications, ultimate effectors of the plastic changes.  相似文献   

19.
The suprachiasmatic nuclei (SCN) of the hypothalamus contain a pacemaker that generates circadian rhythms in many functions. Light is the most important stimulus that synchronizes the circadian pacemaker to the environmental cycle. In this paper we have characterized the baseline neuronal firing patterns of the SCN as well as their response to light in freely moving rats. Multiunit and single-unit recordings showed that SCN neurons increase discharge during daytime and decrease discharge at night. Discharge levels of individual neurons that were followed throughout the circadian cycle appeared in phase with the population and were characterized by low discharge rates (often below 1 Hz), with a twofold increase during the day. The effect of light on the multiunit response was dependent on the duration of light exposure and on light intensity, with light thresholds of approximately 0.1 lux. The light response level showed a strong dependency on time of day, with large responsiveness at night and low responsiveness during day. At both phases of the circadian cycle, the response level could be raised by an increase in light intensity. Single-unit measurements revealed that the time-dependent light response of SCN neurons was present also at the level of single units. The results show that the basic light response characteristics that were observed at the multiunit level result from an integrated response of similarly behaving single units. Research at the single-unit level is therefore a useful approach for investigating the basic principles of photic entrainment.  相似文献   

20.
The development and maturation of the endolymphatic sac (ES) and duct (ED) were studied in the newt Cynops pyrrhogaster. The ES first appears as an oval capsule at the dorsal-medial tip of the otic vesicle at stage 39, about 11 days after oviposition. The ES consists of polymorphous epithelial cells with a minimum of cytoplasm. The intercellular space (IS) between the epithelial cells is narrow and has a smooth surface. At stage 44, the size of the ES increases as many vacuoles in the IS become filled. At stage 46, 18 days after oviposition, the ES elongates markedly and a slit-like lumen is found in the ES. The epithelium contains a few cell organelles which are scattered in the cytoplasm. The vacuoles in the IS are fused, which expands the IS. Two days later (stage 48), floccular material (endolymph) is present in the expanded lumen. The IS dilates and has a wide and irregular appearance. At stage 50, approximately 26 days after oviposition, the ES extends and expands significantly and crystals (otoconia) can now be seen in the widened lumen of the ES. The cytoplasm of the cuboidal epithelial cells contains an abundance of vesicles surrounded by ribosomes and Golgi complexes. Intercellular digitations are formed in the expanded IS. At stage 54, the ES forms a large bellow-like pouch. Numerous otoconia accumulate in the lumen. Free floating cells and cell debris can be seen in the lumen at this stage. The epithelial cells contain numerous cytoplasmic organelles which are evenly distributed in the cytoplasm. Granules are found in the apical and lateral cytoplasm. The IS is loose and displays a labyrinthine appearance. The primitive ED first appears as a connection between the ES and the saccule but no lumen is present inside at stage 39. At stage 46, a narrow lumen is formed in the ED, which corresponds to the formation of the ES lumen. At stage 50, as the ED extends, floccular material is seen in the lumen. At stage 54, the ED bears numerous microvilli on its luminal surface. Otoconia and endolymph are present in the ED. Tight junctions between the epithelial cells are formed at stage 46. A fully developed intercellular junctional complex is produced at stage 54. Based on the development of the ES and ED, the maturation of function of the ES and ED are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号