首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Distributed differential space-time coding for wireless relay networks   总被引:1,自引:0,他引:1  
Distributed space-time coding is a cooperative transmission scheme for wireless relay networks. With this scheme, antennas of the distributive relays work as transmit antennas of the sender and generate a space-time code at the receiver. It achieves the maximum diversity. Although the scheme needs no channel information at relays, it does require full channel information, both the channels from the transmitter to relays and the channels from relays to the receiver, at the receiver. In this paper, we propose a differential transmission scheme, which requires channel information at neither relays nor the receiver, for wireless relay networks. As distributed space-time coding can be seen as the counterpart of space-time coding in the network setting, this scheme is the counterpart of differential space-time coding. Compared to coherent distributed space-time coding, the differential scheme is 3dB worse. In addition, we show that Alamouti, square real orthogonal, and Sp(2) codes can be used differentially in networks with corresponding numbers of relays. We also propose distributed differential space-time codes that work for networks with any number of relays using circulant matrices.  相似文献   

2.
宋高俊  周正中  钟俊 《信号处理》2004,20(5):445-448
本文提出了频率选择性衰变信道中采用了差分空频编码的正交频分复用(OFDM)传输方法。根据信道长度,我们将每个天线OFDM帧中的输入数据分组,同一组中各天线上的数据编码组成为一个对角信号星座,沿频域方向独立的对每组信号实施差分编码。通过分析成对错误概率,我们证明了这种码潜在能提供的分集是发射天线数,接收天线数和信道长度的乘积,比差分空时码具有更大分集增益,因而具有更好的性能,这一分析结果也为我们的仿真实验证实了。  相似文献   

3.
Broadband MIMO-OFDM wireless communications   总被引:48,自引:0,他引:48  
Orthogonal frequency division multiplexing (OFDM) is a popular method for high data rate wireless transmission. OFDM may be combined with antenna arrays at the transmitter and receiver to increase the diversity gain and/or to enhance the system capacity on time-varying and frequency-selective channels, resulting in a multiple-input multiple-output (MIMO) configuration. The paper explores various physical layer research challenges in MIMO-OFDM system design, including physical channel measurements and modeling, analog beam forming techniques using adaptive antenna arrays, space-time techniques for MIMO-OFDM, error control coding techniques, OFDM preamble and packet design, and signal processing algorithms used to perform time and frequency synchronization, channel estimation, and channel tracking in MIMO-OFDM systems. Finally, the paper considers a software radio implementation of MIMO-OFDM.  相似文献   

4.
Transmitter diversity and down-link beamforming can be used in high-rate data wireless networks with orthogonal frequency division multiplexing (OFDM) for capacity improvement. We compare the performance of delay, permutation and space-time coding transmitter diversity for high-rate packet data wireless networks using OFDM modulation. For these systems, relatively high block error rates, such as 10%, are acceptable assuming the use of effective automatic retransmission request (ARQ). As an alternative, we also consider using the same number of transmitter antennas for down-link beamforming as we consider for transmitter diversity. The investigation indicates that delay transmitter diversity with quaternary phase-shift keying (QPSK) modulation and adaptive antenna arrays provides a good quality of service (QoS) with low retransmission probability, while space-time coding transmitter diversity provides high peak data rates. Down-link beamforming together with adaptive antenna arrays, however, provides a higher capacity than transmitter diversity for typical mobile environments  相似文献   

5.
We consider a space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) system with multiple transmitter and receiver antennas over correlated frequency- and time-selective fading channels. It is shown that the product of the time-selectivity order and the frequency-selectivity order is a key parameter to characterize the outage capacity of the correlated fading channel. It is also observed that STCs with large effective lengths and ideal built-in interleavers are more effective in exploiting the natural diversity in multiple-antenna correlated fading channels. We then propose a low-density parity-check (LDPC)-code-based STC-OFDM system. Compared with the conventional space-time trellis code (STTC), the LDPC-based STC can significantly improve the system performance by exploiting both the spatial diversity and the selective-fading diversity in wireless channels. Compared with the previously proposed turbo-code-based STC scheme, LDPC-based STC exhibits lower receiver complexity and more flexible scalability. We also consider receiver design for LDPC-based STC-OFDM systems in unknown fast fading channels and propose a novel turbo receiver employing a maximum a posteriori expectation-maximization (MAP-EM) demodulator and a soft LDPC decoder, which can significantly reduce the error floor in fast fading channels with a modest computational complexity. With such a turbo receiver, the proposed LDPC-based STC-OFDM system is a promising solution to highly efficient data transmission over selective-fading mobile wireless channels  相似文献   

6.
Space-time coding techniques significantly improve transmission efficiency in radio channels by using multiple transmit and/or receive antennas and coordination of the signaling over these antennas. Bit-interleaved coded modulation gives good diversity gains with higher order modulation schemes using well-known binary convolutional codes on a single transmit and receive antenna link. By using orthogonal frequency division multiplexing (OFDM), wideband transmission can be achieved over frequency-selective fading radio channels without adaptive equalizers. In this correspondence, we combine these three ideas into a family of flexible space-time coding methods. The pairwise error probability is analyzed based on the correlated fading assumption. Near-optimum iterative decoders are evaluated by means of simulations for slowly varying wireless channels. Theoretical evaluation of the achievable degree of diversity is also presented. Significant performance gains over the wireless local area network (LAN) 802.11a standard system are reported.  相似文献   

7.
On achievable performance of spatial diversity fading channels   总被引:3,自引:0,他引:3  
Channel time-variation and frequency selectivity [causing intersymbol interference (ISI)] are two major impairments in transmission for a wireless communication environment. Spatial diversity on the transmitter or the receiver side has been traditionally used to combat multipath fading. Previous results indicate significant gains in using multiple transmitter and receiver antenna diversity. By deriving the mutual information and cutoff rate we characterize the gains on these channels. We show that gains linear in the number of antennas can be achieved either when the signal-to-noise ratio (SNR) becomes very large or when the number of antennas becomes large. We show that some of these gains can be achieved by lower complexity linear receiver structures. By evaluating the cutoff rate for phase-shift keying (PSK) constellations we further quantify the gains of using spatial diversity at both the transmitter and the receiver. Next, we examine the expected mutual information for slowly fading ISI channels where the channel is assumed to be block time-invariant. We then examine the impact of fast channel time variation (time variation within a transmission block) on multicarrier transmission schemes. We derive the average mutual information for orthogonal frequency-division multiplexing (OFDM) in time-varying ISI environments. Using this we examine the impact of transmitter and receiver diversity on OFDM transmission over time-varying ISI channels. We also study the effect of time variation on OFDM packet-size design  相似文献   

8.
The paper considers joint channel estimation and data sequence detection for multipath radio channels with multiple antennas at the transmitter and/or receiver. An iterative space-time receiver based on the expectation-maximization algorithm is proposed. We examine the performance of this receiver for transmit diversity and space-time coding methods over Rayleigh fading channels. Simulation results show that the receiver can often achieve near-coherent performance with modest complexity and using very few pilot symbols.  相似文献   

9.
Combined array processing and space-time coding   总被引:18,自引:0,他引:18  
The information capacity of wireless communication systems may be increased dramatically by employing multiple transmit and receive antennas. The goal of system design is to exploit this capacity in a practical way. An effective approach to increasing data rate over wireless channels is to employ space-time coding techniques appropriate to multiple transmit antennas. These space-time codes introduce temporal and spatial correlation into signals transmitted from different antennas, so as to provide diversity at the receiver, and coding gain over an uncoded system. For large number of transmit antennas and at high bandwidth efficiencies, the receiver may become too complex whenever correlation across transmit antennas is introduced. This paper dramatically reduces encoding and decoding complexity by partitioning antennas at the transmitter into small groups, and using individual space-time codes, called the component codes, to transmit information from each group of antennas. At the receiver, an individual space-time code is decoded by a novel linear processing technique that suppresses signals transmitted by other groups of antennas by treating them as interference. A simple receiver structure is derived that provides diversity and coding gain over uncoded systems. This combination of array processing at the receiver and coding techniques for multiple transmit antennas can provide reliable and very high data rate communication over narrowband wireless channels. A refinement of this basic structure gives rise to a multilayered space-time architecture that both generalizes and improves upon the layered space-time architecture proposed by Foschini (see Bell Labs Tech. J., vol.1, no.2, 1996)  相似文献   

10.
正交空时分组码在OFDM系统中的性能估计   总被引:1,自引:0,他引:1  
在宽带OFDM系统中对正交空时分组码方案进行了研究,根据Almouti方案的译码原理给出了在正交空时分组码传输的频率选择性衰落信道条件下接收机输出瞬时信噪比的一般表达式,同时分两种情况进一步分析了其最小距离球界的符号差错性能。结果表明,在系统发送天线数、接收天线数及多径数目乘积较小的情形下,系统可以达到最大的分集增益。  相似文献   

11.
文献[1]提出了一种使用正交设计的单输入多输出正交频分复用(SIMO-OFDM)系统的空间分集接收结构,目的是为了减少接收端DFT块的数目以降低系统复杂度和减少功率消耗。由于在线性处理过程中噪声叠加的影响,造成了一定的性能损失。本文提出了一种基于空时分组编码的多输入多输出OFDM(MIMO-OFDM)系统空间分集接收方案,通过在文献[1]提出的分集结构中引入使用空时分组编码的发射分集,弥补了因减少DFT块数目而造成的性能损失。本文对使用空时分组编码后的处理过程进行了推导,并对使用空时编码前后的系统性能进行了仿真和比较。  相似文献   

12.
Using Orthogonal and Quasi-Orthogonal Designs in Wireless Relay Networks   总被引:2,自引:0,他引:2  
Distributed space-time coding was proposed to achieve cooperative diversity in wireless relay networks without channel information at the relays. Using this scheme, antennas of the distributive relays work as transmit antennas of the sender and generate a space-time code at the receiver. It achieves the maximal diversity when the transmit power is infinitely large. This paper is on the design of practical distributed space-time codes (DSTCs). We use orthogonal and quasi-orthogonal designs which are originally used in the design of space-time codes for multiple-antenna systems. It is well known that orthogonal space-time codes have full diversity and linear decoding complexity. They are particularly suitable for transmissions in the network setting using distributed space-time coding since their ldquoscale-freerdquo property leads to good performance. Our simulations show that they achieve lower error rates than the random code. We also compare distributed space-time coding to selection decode-and-forward using the same orthogonal designs. Simulations show that distributed space-time coding achieves higher diversity than selection decode-and-forward (DF) when there is more than one relay. We also generalize the distributed space-time coding scheme to wireless relay networks with channel information at the relays. Although our analysis and simulations show that there is no improvement in the diversity, in some networks, having channel information at the relays saves both the transmission power and the transmission time.  相似文献   

13.
A turbo multiuser receiver is proposed for space-time block and channel-coded code division multiple access (CDMA) systems in multipath channels. The proposed receiver consists of a first stage that performs detection, space-time decoding, and multipath combining followed by a second stage that performs the channel decoding. A reduced complexity receiver suitable for systems with large numbers of transmitter antennas is obtained by performing the space-time decoding along each resolvable multipath component and then diversity combining the set of space-time decoded outputs. By exchanging the soft information between the first and second stages, the receiver performance is improved via iteration. Simulation results show that while in some cases a noniterative space-time coded system may have inferior performance compared with a system without space-time coding in a multipath channel, proposed iterative schemes significantly outperform systems without space-time coding, even with only two iterations. Furthermore, the performance loss in the reduced-complexity receiver due to decoupling of interference suppression, space-time decoding, and multipath combining is very small for error rates of practical interest.  相似文献   

14.
In 4G broadband wireless communications, multiple transmit and receive antennas are used to form multiple input multiple output (MIMO) channels to increase the capacity (by a factor of the minimum number of transmit and receive antennas) and data rate. In this paper, the combination of MIMO technology and orthogonal frequency division multiplexing (OFDM) systems is analyzed for wideband transmission which mitigates the intersymbol interference and hence enhances system capacity. In MIMO-OFDM systems, the coding is done over space, time, and frequency domains to provide reliable and robust transmission in harsh wireless environment. Also, the performance of space time frequency (STF) coded MIMO-OFDM is analyzed with space time and space frequency coding as special cases. The maximum achievable diversity of STF coded MIMO-OFDM is analyzed and bit error rate performance improvement is verified by simulation results. Simulations are carried out in harsh wireless environment, whose effect is mitigated by using higher tap order channels. The complexity is resolved by employing sphere decoder at the receiver.  相似文献   

15.
Most existing space-time coding schemes assume time-invariant fading channels and offer antenna diversity gains relying on accurate channel estimates at the receiver. Other single differential space-time block coding schemes forego channel estimation but are less effective in rapidly fading environments. Based on a diagonal unitary matrix group, a novel double differential space-time block coding approach is derived in this paper for time-selective fading channels. Without estimating the channels at the receiver, information symbols are recovered with antenna diversity gains regardless of frequency offsets. The resulting transceiver has very low complexity and is applicable to an arbitrary number of transmit and receive antennas. Approximately optimal space-time codes are also designed to minimize bit error rate. System performance is evaluated both analytically and with simulations  相似文献   

16.
Space-time coding is well understood for high data rate communications over wireless channels with perfect channel state information. On the other hand, channel coding for multiple transmit antennas when channel state information is unknown has only received limited attention. A new signaling scheme, named unitary space-time modulation, has been proposed for the latter case. In this paper, we consider the use of turbo coding together with unitary space-time modulation. We demonstrate that turbo coded space-time modulation systems are well suited to wireless communication systems when there is no channel state information, in the sense that the turbo coding improves the bit error rate (BER) performance of the system considerably. In particular, we observe that the turbo-coded system provides 10-15 dB coding gain at a BER of 10/sup -5/ compared to the unitary space-time modulation for various transmit and receive antenna diversity cases.  相似文献   

17.
Multiple transmit and receive antennas can be used to form multiple-input multiple-output (MIMO) channels to increase the capacity by a factor of the minimum number of transmit and receive antennas. In this paper, orthogonal frequency division multiplexing (OFDM) for MIMO channels (MIMO-OFDM) is considered for wideband transmission to mitigate intersymbol interference and enhance system capacity. The MIMO-OFDM system uses two independent space-time codes for two sets of two transmit antennas. At the receiver, the independent space-time codes are decoded using prewhitening, followed by minimum-Euclidean-distance decoding based on successive interference cancellation. Computer simulation shows that for four-input and four-output systems transmitting data at 4 Mb/s over a 1.25 MHz channel, the required signal-to-noise ratios (SNRs) for 10% and 1% word error rates (WER) are 10.5 dB and 13.8 dB, respectively, when each codeword contains 500 information bits and the channel's Doppler frequency is 40 Hz (corresponding normalized frequency: 0.9%). Increasing the number of the receive antennas improves the system performance. When the number or receive antennas is increased from four to eight, the required SNRs for 10% and 1% WER are reduced to 4 dB and 6 dB, respectively. Therefore, MIMO-OFDM is a promising technique for highly spectrally efficient wideband transmission.  相似文献   

18.
Multiple transmit-and-receive antennas can be used in orthogonal frequency division multiplexing (OFDM) systems to improve communication quality and capacity. In this paper, we present two techniques to improve the performance and reduce the complexity of channel parameter estimation: optimum training-sequence design and simplified channel estimation. The optimal training sequences not only simplify the initial channel estimation, but also attain the best estimation performance. The simplified channel estimation significantly reduces the complexity of the channel estimation at the expense of a negligible performance degradation. The effectiveness of the new techniques is demonstrated through the simulation of an OFDM system with two-transmit and two-receive antennas. The space-time coding with 240 information bits per codeword is used for transmit diversity. From the simulation, the required signal-to-noise ratio is only about 9 dB for a 10% word error rate for a channel with the typical urban- or hilly-terrain delay profile and a 40-Hz Doppler frequency  相似文献   

19.
The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last decade - both in academia and industry. Multiple antennas can be utilized in order to accomplish a multiplexing gain, a diversity gain, or an antenna gain, thus enhancing the bit rate, the error performance, or the signal-to-noise-plus-interference ratio of wireless systems, respectively. With an enormous amount of yearly publications, the field of multiple-antenna systems, often called multiple-input multiple-output (MIMO) systems, has evolved rapidly. To date, there are numerous papers on the performance limits of MIMO systems, and an abundance of transmitter and receiver concepts has been proposed. The objective of this literature survey is to provide non-specialists working in the general area of digital communications with a comprehensive overview of this exciting research field. To this end, the last ten years of research efforts are recapitulated, with focus on spatial multiplexing and spatial diversity techniques. In particular, topics such as transmitter and receiver structures, channel coding, MIMO techniques for frequency-selective fading channels, diversity reception and space-time coding techniques, differential and non-coherent schemes, beamforming techniques and closedloop MIMO techniques, cooperative diversity schemes, as well as practical aspects influencing the performance of multiple-antenna systems are addressed. Although the list of references is certainly not intended to be exhaustive, the publications cited will serve as a good starting point for further reading.  相似文献   

20.
Orthogonal Frequency Division Multiplexing (OFDM) systems are commonly used to mitigate frequency-selective multipath fading and provide high-speed data transmission. In this paper, we derive new union bounds on the error probability of a coded OFDM system in wireless environments. In particular, we consider convolutionally coded OFDM systems employing single and multiple transmit antennas over correlated block fading (CBF) channels with perfect channel state information (CSI). Results show that the new union bound is tight to simulation results. In addition, the bound accurately captures the effect of the correlation between sub-carriers channels. It is shown that as the channel becomes more frequency-selective, the performance get better due to the increased frequency diversity. Moreover, the bound also captures the effect of multi-antenna as space diversity. The proposed bounds can be applied for coded OFDM systems employing different coding schemes over different channel models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号