首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two studies were conducted to evaluate the effect of a glyphosate-tolerant (event nk603) and a corn rootworm protected (event MON863) corn hybrid on feed intake and milk production compared with the nontransgenic hybrid and two reference hybrids. In Experiment 1, 16 multiparous Holstein cows were assigned to one of four treatments in replicated 4 x 4 Latin squares with 28-d periods. Diets contained 40% (dry matter [DM] basis) of either 1) glyphosate-tolerant corn silage (GT), 2) nontransgenic control corn silage, or 3) two nontransgenic reference hybrids which are commercially available. Each diet also contained 23% corn grain from the same hybrid that supplied the silage. At ensiling, rapid drying conditions prevailed and the GT hybrid was the last to be harvested which resulted in greater DM content at similar physiological maturity. The 4% fat-corrected milk (FCM) yield and DMI were reduced for cows fed the GT corn diet due to the higher DM content of the GT silage (37.1 vs. 33.2 kg/d and 4.05 vs. 3.61% of BW, respectively). There was no effect of the GT diet on milk composition or efficiency of 4% FCM production that averaged 1.43 kg/kg of DM intake for all diets. In Experiment 2, 16 multiparous Holstein cows were assigned to one of four treatments in replicated 4 x 4 Latin squares with 21-d periods. Diets contained 26.7% (DM basis) corn grain from either 1) corn rootworm protected (event MON863) corn hybrid, 2) nontransgenic control corn hybrid, or 3) the same two nongenetically enhanced reference hybrids used in Experiment 1. The 4% FCM yield (34.8 kg/d) and DM intake (4.06% of BW) were unaffected by diet. Efficiency of FCM production (average 1.32 kg/kg of DMI) was not affected by diet. In summary, these two studies indicated that insertion of a gene for glyphosate tolerance or corn rootworm protection into a corn hybrid did not affect its nutritional value (as measured by efficiency of milk production) for lactating dairy cows compared with conventional corn hybrids.  相似文献   

2.
Lactating dairy cows were used to determine effects of feeding glyphosate-tolerant or insect-protected corn hybrids on feed intake, milk production, milk composition, and ruminal digestibility. Corn resistant to European corn borer (Ostrinia nubilalis) infestation (Bt-MON810), or its nontransgenic control (Bt-CON), were planted in alternating fields during two successive years. One-half of each strip was harvested for whole plant corn silage and the remainder was allowed to mature and harvested as grain. Effects of feeding diets containing either Bt-MON810 or Bt-CON grain and silage were determined in two experiments (1 and 2) conducted during successive years. In experiment 3, glyphosate-tolerant Roundup Ready corn (RR-GA21) or its nontransgenic control (RR-CON) corn were grown in alternating fields during one cropping season. Diets contained 42 to 60% corn silage and 20 to 34% corn grain from Bt-MON810, RR-GA21, or the appropriate nontransgenic counterpart; treatments were applied using a switchback design. Cows were fed ad libitum and milked twice daily. There were no differences for nutrient composition between silage sources or between grain sources within an experiment. Data for experiments 1 and 2 indicated similar dry matter intake (DMI), 4% fat-corrected milk (FCM) production, and milk composition between Bt-MON810 and Bt-CON diets. There were no differences for DMI, 4% FCM production, and milk composition between RR-GA21 and RR-CON diets. There was no difference in ruminal degradability, determined separately for corn silage and corn grain, for RR-GA21 or Bt-MON810-hybrids compared with their respective controls. These data demonstrate equivalence of nutritional value and production efficiency for corn containing Bt-MON810 compared with its control and for RR-GA21 corn compared with its control.  相似文献   

3.
A leafy corn hybrid was compared to a grain corn hybrid as silage and high moisture grain to evaluate dry matter intake, milk yield, and milk composition. Sixteen multiparous Holstein cows averaging 97 DIM were used in a feeding trial based on 4 x 4 Latin squares with 21-d periods. Each of four diets contained (dry basis) 8% chopped hay, 42% corn silage, 11% high moisture corn grain, 10% whole, fuzzy cottonseed, and 29% protein concentrate. One diet used leafy corn as both high moisture grain and silage. A second diet contained grain corn hybrid (control) as both high moisture grain and silage. A third diet contained leafy corn for high moisture grain and control corn for silage and the fourth diet used control corn for high moisture grain and leafy corn for silage. Cows fed diets containing leafy silage produced more milk and milk protein and ate more DM than cows fed control silage. The corn hybrid used for high moisture grain did not influence milk yield or composition. Dry matter intake was greater for cows fed the diet containing both leafy high moisture grain and leafy silage than for cows fed both control high moisture grain and control silage, but milk yield and composition were not different. When fed as silage, the leafy corn hybrid used in this experiment supported greater DMI as well as higher milk and protein yields when compared to the grain corn hybrid.  相似文献   

4.
This two-phase trial involved 83 Holstein heifers. The rearing phase consisted of two diets (alfalfa silage plus corn grain for ad libitum intake vs. corn silage plus urea for ad libitum intake) and two breeding age groups (13 vs. 16 mo). The lactation phase compared the above treatments plus two lactation feeding systems: concentrate fed individually to production versus a TMR. The heifers were assigned randomly to the rearing phase at 7 wk of age and fed their respective diets until 14 d prepartum. They were placed on preassigned lactation diets 14 d prepartum and remained on the lactation phase for 550 consecutive d. Daily gains and height at the withers were similar between forage groups during the first half of the rearing phase; in the second half, the heifers fed alfalfa silage were taller at the withers. Those fed corn silage consumed less DM and CP throughout the rearing phase and gained more BW than the heifers fed alfalfa in the latter half. There were no differences in daily gain or DMI between the breeding age groups. In the lactation phase, the group fed alfalfa for ad libitum intake consumed more DM and gave more milk during the first 90 d of lactation than heifers fed corn silage. However, after 90 d the difference in cumulative milk production was not significant. There were no differences in milk production. FCM, or DMI between breeding age groups. The cows fed concentrate consumed more DM and gave more milk during the first 90 d of lactation. By 550 d, there were no differences. Feeding high levels of corn silage can cause heifers to have lower DMI in early lactation. These differences tend to disappear during the second lactation.  相似文献   

5.
The objectives of this study were to determine the effects of NutriDense and waxy corn hybrids as silage and grain sources on milk yield, milk composition, digestibility of dietary components, and rumen characteristics. Six multiparous (intact) and six primiparous (ruminally cannulated) Holstein cows were assigned at 72 to 90 d of lactation to a 3 x 6 Latin rectangle design experiment to treatment of: 1) control diet, 2) NutriDense corn diet, and 3) waxy corn diet. Diets consisted of 10.9% alfalfa silage, 32.8% corn silage, 27.9% cracked corn grain, and 28.4% other ingredients (DM basis). Milk, FCM, and milk fat and protein yields were higher for cows fed the waxy diet than those fed the control diet. Milk protein percentage tended to be higher for cows fed the control and waxy diets than those fed the NutriDense diet. Dry matter intake tended to be higher for cows fed the waxy diet than the NutriDense diet. Apparent DM, OM, CP, ADF, NDF, and gross energy digestibilities were similar among dietary treatments, while apparent starch digestibility was higher for the waxy corn than for the NutriDense corn. Rumen NH3-N concentration was higher for cows fed the NutriDense diet than for those fed the control and waxy diets. The proportion of ruminal propionate was higher for the waxy diet than the control diet. NutriDense and waxy corn hybrids can be effective substitutes for conventional yellow dent corn hybrids in lactating dairy cow rations.  相似文献   

6.
The objective was to evaluate the nutrient intake and digestibility and milk production response of lactating dairy cows fed diets based on corn silage produced from 3 different types of corn hybrids. Experimental diets contained 36.4% of the dietary dry matter (DM) from corn silage produced from normal (Agratech 1021, AgraTech Seeds Inc., Atlanta, GA), brown midrib (BMR; Mycogen F2F797, Mycogen Seeds, Indianapolis, IN), or waxy (Master's Choice 590, Master's Choice Hybrids, Ullin, IL) hybrids. Thirty-six multiparous and primiparous Holstein cows (66 ± 22 d in milk, 41 ± 8 kg/d of milk) were used in an 11-wk completely randomized design trial during the fall of 2009. All cows were fed a diet containing normal corn silage during the first 2wk of the trial before being assigned to 1 of 3 treatments for the following 9 wk. Data collected during the first 2 wk were used as a covariate in the statistical analysis. No difference was observed in dry matter intake (DMI) among treatments, which averaged 22.6 kg/d. Milk yield was higher for cows fed BMR (37.6 kg/d) compared with waxy (35.2 kg/d) but was similar to that of cows fed control (36.2 kg/d). Milk fat percentage tended to be lower for cows fed control (3.28%) compared with those fed BMR (3.60%) or waxy (3.55%) corn silage. Milk protein percentage tended to be lower for cows fed control (2.79%) compared with waxy (2.89%) but similar to that of those fed BMR (2.85%). No differences were observed in yield of milk components. Energy-corrected milk (ECM) yield and dairy efficiency (ECM:DMI) did not differ among treatments. Cows fed BMR tended to gain more body weight compared with those fed control and waxy. Results of this trial are consistent with previous reports in which cows fed diets based on corn silage produced from BMR hybrids have higher milk yield compared with those fed other hybrids. Corn silage produced from the waxy hybrid supported a similar yield of ECM because of higher milk components, but milk yield was not improved compared with the control.  相似文献   

7.
Interactions of endosperm type of corn grain and the brown midrib 3 mutation (bm3) in corn silage on feeding behavior, productivity, energy balance, and plasma metabolites of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated cows (72 +/- 8 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design experiment with a 2 x 2 factorial arrangement of treatments. Treatments were corn grain endosperm type (floury or vitreous), and corn silage type (bm3 or isogenic control). Diets contained 26% neutral detergent fiber (NDF) and 30% starch. Floury endosperm grain decreased dry matter intake (DMI) 1.9 kg/ d compared with vitreous grain when combined with control corn silage but did not affect DMI when combined with bm3 corn silage. This interaction of treatments occurred because of changes in meal size; floury endosperm grain decreased meal size in control silage diets but increased meal size in bm3 corn silage diets. Ruminal pool sizes reflected DMI differences among diets, suggesting that ruminal fill was not the primary limitation on intake. Brown midrib 3 corn silage reduced rumination time per day and number of rumination bouts per day. Floury endosperm grain decreased 3.5% fat-corrected milk by 1.2 kg/d when combined with control silage but increased 3.5% fat-corrected milk by 2.1 kg/d when combined with bm3 corn silage. Starch and fiber digestibility interact to affect feeding behavior and milk production and production response to bm3 corn silage depends on the grain source that is fed.  相似文献   

8.
We evaluated effects of wet corn gluten feed (WCGF) and a novel product (SHSL) containing raw soybean hulls and corn steep liquor on performance and digestion in lactating dairy cows. In Experiment 1, 46 multiparous Holstein cows were assigned to control (C), WCGF (20% of diet DM), or SHSL (20% of diet DM). Diets were fed as a total mixed ration beginning after calving. The C diet contained (dry matter [DM] basis) 30% alfalfa hay, 15% corn silage, 32% corn, 9.3% whole cottonseed, 4.4% solvent soybean meal (SBM), and 3.3% expeller SBM. The WCGF replaced 10% alfalfa hay, 5% corn silage, and 5% corn grain, while expeller SBM replaced solvent SBM to maintain diet rumen undegradable protein. The SHSL replaced 10% alfalfa hay, 5% corn silage, 3% solvent SBM, and 2% corn. Dietary crude protein averaged 18.4%. Milk, energy-corrected milk (ECM), DM intake (DMI), and ECM/DMI were similar among diets during the first 13 wk of lactation. During wk 14 through 30 postpartum, WCGF and SHSL improved milk, ECM, milk component yield, and ECM/DMI. In Experiment 2, 6 cows were used to evaluate digestibility and rumen traits. Dry matter intake and total tract digestibilities of DM, fiber, and crude protein were not different among diets. Diets did not affect ruminal liquid dilution rate, pH, or concentrations of total volatile fatty acids or ammonia, but acetate:propionate was higher for C (3.38) than for WCGF (2.79) or SHSL (2.89). The WCGF and SHSL products can serve as alternative feedstuffs in diets fed to lactating dairy cattle.  相似文献   

9.
A study was conducted to investigate the response to supplemental tallow of lactating cows fed basal diets with different alfalfa silage:corn silage ratios. We postulated that supplemental tallow will have decreasing negative effects on rumen fermentation, dry matter intake (DMI), and milk fat percentage as the dietary ratio of alfalfa silage:corn silage is increased. Eighteen Holstein cows averaging 134 +/- 14 d in milk were used in a replicated 6 x 6 Latin square design with 21-d periods. Treatments were arranged as a 2 x 3 factorial with 0 or 2% tallow (DM basis) and three forage treatments: 1) 50% of diet DM as corn silage, 2) 37.5% corn silage and 12.5% alfalfa silage, and 3) 25% corn silage and 25% alfalfa silage. Cows were allowed ad libitum consumption of a total mixed ration. Diets were formulated to contain 18% crude protein and 32% neutral detergent fiber. No fat x forage treatment interactions were observed. Fat supplemented cows had lower DMI and produced more milk with less milk fat content relative to non-supplemented cows. Concentration of trans-octadecenoic acids was higher in milk fat of tallow-supplemented cows. Tallow supplementation had no effect on ruminal pH and acetate:propionate ratio, but tended to decrease total volatile fatty acid (VFA) concentration in the rumen. Increasing the proportion of alfalfa silage increased DMI, milk fat percentage, and milk fat yield regardless of the fat content of the diet. Total VFA concentration and acetate:propionate ratio in the rumen were increased in response to higher levels of alfalfa in the diets. These results suggest that replacing corn silage with alfalfa silage did not alleviate the negative response of dairy cows to tallow supplementation at 2% of diet DM.  相似文献   

10.
Ninety-six cows in early lactation were used in two experiments to measure the impact of alfalfa maturity (early or midbud vs. early or midbloom) and method of forage preservation (silage vs. hay) on DMI and milk production. Silage diets were fed as TMR, and hay was fed separately from grain. All diets contained 60% alfalfa (dry basis) and were balanced for 19% CP. Maturity had little effect on milk production in either experiment. Adjusted milk production for early cut silage, late cut silage, early cut hay, and late cut hay were 33.6, 33.4, 30.7, and 32.1 kg/d for Experiment 1 and 38.1, 37.0, 35.0 and 35.0 kg/d for Experiment 2. Increased alfalfa maturity tended to reduce DMI. Cows fed the silage diets consumed 1.2 kg more DM and produced an average of 2.1 kg more milk daily in Experiment 1 than those fed the hay diets. All treatment groups consumed similar amounts of DM in Experiment 2; however, cows fed silage produced 2.6 kg/d more milk than those fed hay. Preserving alfalfa as silage and feeding in a TMR to cows in early lactation resulted in greater milk production via increased DMI or improved feed efficiency compared with preserving alfalfa as hay and feeding grain separately.  相似文献   

11.
A study was conducted to evaluate the effect of including alfalfa preserved either as silage or long-stem or chopped hay on DMI and milk fat production of dairy cows fed corn silage-based diets with supplemental tallow (T). Fifteen Holstein cows that averaged 117 DIM were used in a replicated 5 x 5 Latin square design with 21-d periods. Treatments (DM basis) were: 1) 50% corn silage:50% concentrate without T (CS); 2) 50% corn silage:50% concentrate with 2% T (CST); 3) 25% corn silage:25% short-cut alfalfa hay:50% concentrate with 2% T (SAHT); 4) 25% corn silage:25% long-cut alfalfa hay:50% concentrate with 2% T (LAHT); and 5) 25% corn silage:25% alfalfa silage:50% concentrate with 2% T (AST). Cows were allowed ad libitum consumption of a TMR fed 4 times daily. Diets averaged 16.4% CP and 30.3% NDF. Including 2% T in diets with corn silage as the sole forage source decreased DMI and milk fat percentage and yield. Replacing part of corn silage with alfalfa in diets with 2% T increased milk fat percentage and yield. The milk fat of cows fed CST was higher in trans-10 C18:1 than that of cows fed diets with alfalfa. No effect of alfalfa preservation method or hay particle length was observed on DMI and milk production. The milk fat percentage and yield were lower, and the proportion of trans-10 C18:1 in milk fat was higher for cows fed LAHT than for cows fed SAHT. Alfalfa preservation method had no effect on milk fat yield. Ruminal pH was higher for cows fed alfalfa in the diets, and it was higher for cows fed LAHT than SAHT. Feeding alfalfa silage or chopped hay appears to be more beneficial than long hay in sustaining milk fat production when 2% T is fed with diets high in corn silage. These results support the role of trans fatty acids in milk fat depression.  相似文献   

12.
Twenty Holstein cows were used in an 8-wk randomized block design study to determine the effects of replacing corn silage with ryegrass silage on nutrient intake, apparent digestion, milk yield, and milk composition. The 8-wk trial consisted of a 2-wk preliminary period followed by a 6-wk collection period. Experimental diets were formulated to provide 55.5% of the total dry matter (DM) as forage. Ryegrass silage was substituted for 0, 35, 65, and 100% of DM provided by corn silage. Dietary concentrations of neutral detergent fiber (NDF) and acid detergent fiber (ADF) increased as ryegrass silage replaced corn silage. Intake of DM and crude protein (CP) was similar for all treatments, but intake of NDF and ADF increased linearly as ryegrass silage replaced corn silage. Apparent digestibility of DM declined linearly, whereas digestibility of CP increased linearly as ryegrass silage replaced corn silage. Apparent digestibility of NDF and ADF was highest for the diets in which ryegrass or corn silages provided all of the forage, resulting in a quadratic response. Dry matter intake was not different among treatments. Yield of milk, fat, and protein increased as ryegrass silage replaced corn silage. No differences were observed for body weight change, body condition score, and serum urea nitrogen concentration, but serum glucose concentration increased with increasing dietary proportion of ryegrass silage. These results indicate that substituting ryegrass silage for a portion or all of the corn silage in diets fed to lactating dairy cows can improve yield of milk and components.  相似文献   

13.
The effects of enhanced in vitro neutral detergent fiber (NDF) digestibility of corn silage on dry matter intake (DMI) and milk yield were evaluated using 32 Holstein cows in a crossover design with 28-d periods. At the beginning of the experiment, cows were 89 d in milk and yielded 45.6 kg/d of milk. Experimental diets contained either brown midrib (bm3) corn silage or isogenic normal corn silage (control) at 44.6% of DM. The NDF digestibility estimated by 30-h in vitro fermentation was higher for bm3 corn silage by 9.7 units. Contents of NDF and lignin were lower for bm3 corn silage by 1.8 and 0.8 units, respectively. Diets were formulated to contain 19% crude protein and 31% NDF and to have a forage to concentrate ratio of 56:44. Daily DMI, milk yield (3.5% fat-corrected milk), and solids-corrected milk were 2.1, 2.6, and 2.7 kg higher, respectively, for cows fed bm3 corn silage. The milk protein and lactose contents were greater for bm3 treatment, but milk fat content was not. Individual milk yield responses of the cows to bm3 treatment were positively related to pretrial milk yield, and DMI response tended to be positively related to pretrial milk yield. Enhanced in vitro NDF digestibility was associated with higher energy intake, which resulted in increased milk yield.  相似文献   

14.
The effect of neutral detergent fiber (NDF) degradability of corn silage in diets containing lower and higher NDF concentrations on lactational performance, nutrient digestibility, and ruminal characteristics in lactating Holstein cows was measured. Eight ruminally cannulated Holstein cows averaging 91 ± 4 (standard error) days in milk were used in a replicated 4 × 4 Latin square design with 21-d periods (7-d collection periods). Dietary treatments were formulated to contain either conventional (CON; 48.6% 24-h NDF degradability; NDFD) or brown midrib-3 (BM3; 61.1% 24-h NDFD) corn silage and either lower NDF (LNDF) or higher NDF (HNDF) concentration (32.0 and 35.8% of ration dry matter, DM) by adjusting the dietary forage content (52 and 67% forage, DM basis). The dietary treatments were (1) CON-LNDF, (2) CON-HNDF, (3) BM3-LNDF, and (4) BM3-HNDF. Data were analyzed as a factorial arrangement of diets within a replicated Latin square design with the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) with fixed effects of NDFD, NDF, NDFD × NDF, period(square), and square. Cow within square was the random effect. Time and its interactions with NDFD and NDF were included in the model when appropriate. An interaction between NDFD and NDF content resulted in the HNDF diet decreasing dry matter intake (DMI) with CON corn silage but not with BM3 silage. Cows fed the BM3 corn silage had higher DMI than cows fed the CON corn silage, whereas cows fed the HNDF diet consumed less DM than cows fed the LNDF diet. Cows fed the BM3 diets had greater energy-corrected milk yield, higher milk true protein content, and lower milk urea nitrogen concentration than cows fed CON diets. Additionally, cows fed the BM3 diets had greater total-tract digestibility of organic matter and NDF than cows fed the CON diets. Compared with CON diets, the BMR diets accelerated ruminal NDF turnover. When incorporated into higher NDF diets, corn silage with greater in vitro 24-h NDFD and lower undegradable NDF at 240 h of in vitro fermentation (uNDF240) allowed for greater DMI intake than CON. In contrast, for lower NDF diets, NDFD of corn silage did not affect DMI, which suggests that a threshold level of inclusion of higher NDFD corn silage is necessary to observe enhanced lactational performance. Results suggest that there is a maximum gut fill of dietary uNDF240 and that higher NDFD corn silage can be fed at greater dietary concentrations.  相似文献   

15.
We hypothesized that substituting a corn hybrid with high cell-wall content and high neutral detergent fiber (NDF) digestibility (HCW) for a hybrid with lower cell-wall content and lower NDF digestibility (LCW) would improve feed intake and milk production in lactating Holstein cows. There was a 3.6 percentage unit difference in NDF content and a 4.1 percentage unit difference in 30-h in vitro NDF digestion between the 2 corn hybrids. In trial 1, 40 cows (12 primiparous) ranging in milk production from 24.1 to 44.0 kg/d, following a 2-wk preliminary period, were used in a crossover design with 2-wk periods. Diets consisted of 45% corn silage (HCW or LCW), 10% alfalfa hay, and 45% concentrates. The DMI (25.4 vs. 24.2 kg/d) and 4% FCM yield (34.3 vs. 31.7 kg/d) were higher for cows fed the HCW diet compared with the LCW diet. When HCW was substituted for LCW on a DM basis, there was no relationship between pretrial milk yield (preliminary period) and subsequent response to HCW silage. In trial 2, 40 cows (8 primiparous) ranging in milk production from 20.6 to 49.0 kg/d, following a 2-wk preliminary period, were used in a crossover design with 2-wk periods. Diets consisted of the same LCW diet as trial 1 and a diet containing HCW at a concentration (40% of DM) that resulted in equal NDF content (30.8%) between the 2 diets (HCWN). The DMI (26.8 kg/d) was unaffected by diet, although there was a trend for greater DMI (% of BW) for cows fed the HCWN diet compared with LCW silage (4.24 vs. 4.12). Milk fat (3.91 vs. 3.79%) and 4% FCM yield (34.9 vs. 33.4 kg/d) were greater for cows fed HCWN vs. LCW diet. When HCW was substituted for LCW silage on an NDF basis, cows with greater milk production during the preliminary period had a greater milk response to HCW than lower-producing cows. Results of these trials supported our hypothesis that HCW corn silage results in greater DMI and milk yield than LCW silage, whether substitution occurs on a DM or NDF basis.  相似文献   

16.
Twenty multiparous Holstein cows, 4 of them surgically fitted with ruminal cannulas, were used in a replicated 4 × 4 Latin square to compare the effects of whole-plant silage and grain produced from NutriDense (ND), leafy NutriDense (LND), or a conventional yellow dent (YD) hybrid on ruminal fermentation, total tract nutrient digestibility, and performance of lactating dairy cows. On a DM basis, diets contained 30.6% corn silage and 27.7% corn grain provided from the 3 hybrids according to the following combinations: 1) YD grain and YD silage, 2) YD grain and LND silage, 3) ND grain and YD silage, and 4) ND grain and LND silage. The average concentrations of crude protein, neutral and acid detergent fiber, and ether extract of LND silage and ND grain were higher, but the contents of nonfibrous carbohydrates and starch were lower than those of their YD counterparts. Although DM intake was similar among treatments, feeding ND grain, LND silage, or both reduced the intakes of nonfibrous carbohydrates and starch but increased the intake of ether extract. Apparent digestibility of starch in the total tract was highest for the diet that contained LND silage and YD grain, whereas the amount and percentage of ether extract that were apparently digested in the total tract was increased and tended to be increased, respectively, by the addition of ND grain, LND silage, or both to the diets. Ruminal fermentation parameters were unaffected by treatments except for the concentration of ammonia nitrogen in the ruminal fluid, which tended to be increased by the feeding of ND grain, LND silage, or both. Production of milk, crude and true protein, fat, lactose, and total solids did not differ among diets. Concentration of milk urea nitrogen increased when the ND grain, LND silage, or both were fed to the cows. Results indicate that ND grain and LND silage were similar to the conventional grain and silage for the feeding of lactating dairy cows.  相似文献   

17.
Forty Holstein cows were used in an 8-wk randomized block design trial to determine the effects of theoretical length of cut (TLC) and kernel processing (KP) of whole plant corn silage on nutrient intake and digestibility, milk yield, and milk composition. Corn was harvested at three-quarters milk line stage of maturity at TLC of 1.90 or 2.54 cm. At each TLC, corn was KP at either 2 or 8 mm roll clearance. The control was harvested at 1.90 cm without KP. Corn silage provided 38% of the dietary dry matter (DM) in the experimental diets. Intake of DM and nutrients was similar among treatments. Apparent digestibility of DM and acid detergent fiber (ADF) increased with increasing TLC. Fiber digestibility was improved by KP compared with unprocessed corn silage. Starch digestibility was greater for corn silage KP at 2 vs. 8 mm. Apparent digestibility of DM, crude protein, and ADF was lowest for the diet containing silage harvested at 2.54 cm TLC and KP at 8 mm, resulting in an interaction of TLC and KP. No differences were observed in DM intake (DMI) among treatments. An interaction of TLC and KP was observed, however, for yield of milk protein and energy-corrected milk (ECM) and efficiency of converting DMI to ECM because of lower yield for diets containing silage harvested at 2.54 cm TLC and KP at 8 mm. Results of this trial indicate that as TLC increases, aggressive KP is necessary to maintain nutrient digestibility and performance of lactating dairy cows.  相似文献   

18.
Effects of genotype and level of intake on net energy for lactation values of corn silage were evaluated by indirect calorimetry in two experiments using lactating and dry, nonpregnant dairy cows. In experiment 1, six multiparous Holstein cows in early lactation were fed experimental diets containing either brown midrib (bm3) or isogenic normal corn silage. Dietary treatments were isogenic and bm3 diets fed ad libitum, and the bm3 diets restricted-fed. Dry matter (DM) intake was 2.4 kg/d greater for cows fed the bm3 diet ad libitum compared with cows fed the isogenic diet. Apparent digestibilities of DM, organic matter, neutral detergent fiber, and acid detergent fiber were greater for cows restricted-fed bm3 than the isogenic diet. In experiment 2, six dry, nonpregnant Holstein cows were fed maintenance diets containing either bm3 or isogenic corn silage. Apparent digestibilities of DM, organic matter, neutral detergent fiber, and acid detergent fiber were greater for cows fed bm3 compared with isogenic corn silage. Digestible energy and metabolizable energy were greater for maintenance diets containing bm3 compared with isogenic corn silage, respectively. These data indicate increased milk production seen in other studies is a result of increased DMI rather than an increase in energy efficiency. Increased organic matter digestibility of bm3 corn silage resulted in greater digestible energy and metabolizable energy values in cows fed at maintenance energy intake. However, calculated net energy for lactation values of bm3 and isogenic corn silages were similar at both productive and maintenance levels of feeding.  相似文献   

19.
Three corn hybrids were harvested as silage and fed to lactating dairy cows to determine performance and digestibility differences between hybrids. Corn hybrids were a grain type, a generic blend, and a leafy type. Starch content of the grain, blend, and leafy silage hybrids was 26.1, 23.8, and 23.5%, respectively. In vitro digestible dry matter of the leafy hybrid silage (69.2%) was higher than the grain (66.8%) or blend (66.7%) hybrid silage. Sixty-two Holstein cows (39 primiparous and 23 multiparous) were fed diets containing (dry matter basis) 40.6% of one of the corn silages, 10.2% alfalfa haylage, 23.5% corn grain, 7.4% whole-fuzzy cotton-seed, 13.8% protein concentrate, and 4.5% vitamin and mineral mix. Cows were assigned to their silage treatment diet 3 d after parturition and remained on the diet until wk 22 of lactation. Dry matter intake, milk yield, and milk components did not differ for cows fed the grain, leafy, or generic blend silage diets for either parity group. Digestibilities of dry matter, organic matter, and neutral detergent fiber, and rate of passage were not different across the silage diets for either parity. Multiparous cows receiving the blend silage diet lost more weight throughout the 22-wk study than did cows on the leafy or grain silage diets. Primiparous cows receiving the blend silage diet spent more time eating than cows on either the grain or leafy silage diet. Time spent chewing did not differ among hybrids. Corn hybrid at 40% of dietary dry matter as silage did not have a major impact on dairy cattle performance in this trial.  相似文献   

20.
《Journal of dairy science》2023,106(3):1773-1789
Reducing the dietary crude protein (CP) concentration can decrease the financial cost and lower the environmental impact of milk production. Two studies were conducted to examine the effects of reducing the dietary CP concentration on animal performance, nutrient digestibility, milk fatty acid (FA) profile, and nitrogen use efficiency (NUE; milk N/N intake) in dairy cows fed legume silage-based diets. Thirty-six multiparous Holstein-Friesian dairy cows that were 76 ± 14 (mean ± SD) days in milk and 698 ± 54 kg body weight were used in a 3 × 3 Latin square design in each of 2 studies, with 3 periods of 28 d. In study 1, cows were fed diets based on a 50:50 ratio of red clover to grass silage [dry matter (DM) basis] containing 1 of 3 dietary CP concentrations: high (H) = 175 g of CP/kg of DM; medium (M) = 165 g of CP/kg of DM; or low (L) = 150 g of CP/kg of DM. In study 2, cows were fed 175 g of CP/kg of DM with a 50:50 ratio of alfalfa to corn silage (H50) or 1 of 2 diets containing 150 g of CP/kg of DM with either a 50:50 (L50) or a 60:40 (L60) ratio of alfalfa to corn silage. Cows in both studies were fed a total mixed ration with a forage-to-concentrate ratio of 52:48 (DM basis). All diets were formulated to meet the MP requirements, except L (95% of MP requirements). In study 1, cows fed L ate 1.6 kg of DM/d less than those fed H or M, but milk yield was similar across treatments. Mean milk protein, fat, and lactose concentrations were not affected by diet. However, the apparent total-tract nutrient digestibility was decreased in cows fed L. The NUE was 5.7 percentage units higher in cows fed L than H. Feeding L also decreased milk and plasma urea concentrations by 4.4 mg/dL and 0.78 mmol/L, respectively. We found no effect of dietary treatment on the milk saturated or monounsaturated FA proportion, but the proportion of polyunsaturated FA was increased, and milk odd- and branched-chain FA decreased in cows fed L compared with H. In study 2, DM intake was 2 kg/d lower in cows receiving L50 than H50. Increasing the alfalfa content and feeding a low-CP diet (L60) did not alter DMI but decreased milk yield and milk protein concentration by 2 kg/d and 0.6 g/kg, respectively, compared with H50. Likewise, milk protein and lactose yield were decreased by 0.08 kg/d in cows receiving L60 versus H50. Diet had no effect on apparent nutrient digestibility. Feeding the low-CP diets compared with H50 increased the apparent NUE by approximately 5 percentage units and decreased milk and plasma urea concentrations by 7.2 mg/dL and 1.43 mmol/L, respectively. Dietary treatment did not alter milk FA profile except cis-9,trans-11 conjugated linoleic acid, which was higher in milk from cows receiving L60 compared with H50. We concluded that reducing CP concentration to around 150 g/kg of DM in red clover and grass or alfalfa and corn silage-based diets increases the apparent NUE and has little effect on nutrient digestibility or milk performance in dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号