首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on the development of a magneto‐optical scanning near‐field optical microscope and the experimental near‐field study of the domain structure for a model magnetic particle of 16 × 16 µm2 of a Co70.4Fe4.6Si15B10 amorphous thin film, deposited on a silicon substrate. We present the topographic, optical and magneto‐optical differential susceptibility (MODS) images of the particle. Imaging by using the local MODS reveals the domain structure. These images are also used for positioning the tip in order to acquire local hysteresis loops, with submicrometre spatial resolution.  相似文献   

2.
In this study, we investigated the relative contributions of atomic number (Z) and density (ρ) to the degradation of the electron backscatter diffraction (EBSD) pattern quality for nanoparticles < 500 nm in diameter. This was accomplished by minimizing the diffuse scattering from the conventional thick mounting substrate through the design of a sample holder that can accommodate particles mounted on thin‐film TEM substrates. With this design, the contributions of incoherently scattered electrons that result in the diffuse background are minimized. Qualitative and quantitative comparisons were made of the EBSD pattern quality obtained from Al2O3 particles approximately 200 nm in diameter mounted on both thick‐ and thin‐film C substrates. For the quantitative comparison we developed a ‘quality’ factor for EBSD patterns that is based on the ratio of two Hough transforms derived from a given EBSD pattern image. The calculated quality factor is directly proportional to the signal‐to‐noise ratio for the EBSD pattern. In addition to the comparison of the thick and thin mounting substrates, we also estimated the effects of Z and ρ by comparing the EBSD pattern quality from the Al2O3 particles mounted on thin‐film substrates with the quality of patterns obtained from Fe–Co nanoparticles approximately 120 nm in diameter. The results indicate that the increased background generated in EBSD patterns by the electrons escaping through the bottom of the small particles is the dominant reason for the poor EBSD pattern quality from nanoparticles < 500 nm in size. This was supported by the fact that we were able to obtain usable EBSD patterns from Al2O3 particles as small as 130 nm using the thin‐film mounting method.  相似文献   

3.
In this study, guiding of surface plasmon polaritons excited at a gold film surface along corrugation‐free channels in regions that are covered with randomly located surface scatterers, is considered using near‐field microscopy for imaging of surface plasmon polariton intensity distributions at the surface. In the wavelength range 713–815 nm, we observed complete inhibition of the surface plasmon polariton propagation inside the random structures composed of individual (≈ 70 nm high) gold bumps (and their clusters) placed on a 55 nm thick gold film with a bump density of 75 µm?2. We demonstrate well‐defined surface plasmon polariton guiding along corrugation‐free 2 µm wide channels in random structures and, in the wavelength range 738–774 nm, low‐loss guiding around 20° bends having a bend radius of ≈ 15 µm.  相似文献   

4.
5.
We describe a near‐field ellipsometer for accurate characterization of ultrathin dielectric films. Optical tunnelling mimics the absorption in metallic films, enabling accurate measurement of the refractive index of ultrathin dielectric film. A regression model shows that a refractive index resolution of 0.001 for films as thin as 1 nm is possible. A solid‐immersion nano‐ellipsometer that incorporates this near‐field ellipsometric technique with a solid‐immersion lens is constructed to demonstrate the viability of this technique. Such a nano‐ellipsometer can accurately characterize thin films ranging in thickness from subnanometre to micrometres with potential transverse resolution of the order of 100 nm.  相似文献   

6.
谭冰  蔡斌 《光学仪器》2022,44(1):87-94
为了提高利用倏逝波传感的光纤传感器的灵敏度问题,仿真并验证了一种基于高折射率镀膜的光纤传感器.首先两根光纤之间利用激光诱导波导自行成技术形成聚合物波导,并在波导表面镀上一层高折射率Ta2O5薄膜以增强波导表面倏逝波强度,从而增加传感器灵敏度.根据聚合物波导制备结果,使用COMSOL Multiphysics?软件对Ta...  相似文献   

7.
We have used conventional high‐resolution transmission electron microscopy and electron energy‐loss spectroscopy (EELS) in scanning transmission electron microscopy to investigate the microstructure and electronic structure of hafnia‐based thin films doped with small amounts (6.8 at.%) of Al grown on (001) Si. The as‐deposited film is amorphous with a very thin (~0.5 nm) interfacial SiOx layer. The film partially crystallizes after annealing at 700 °C and the interfacial SiO2‐like layer increases in thickness by oxygen diffusion through the Hf‐aluminate layer and oxidation of the silicon substrate. Oxygen K‐edge EELS fine‐structures are analysed for both films and interpreted in the context of the films’ microstructure. We also discuss valence electron energy‐loss spectra of these ultrathin films.  相似文献   

8.
We have developed a novel light source for use in a scanning near‐field optical microscope (SNOM or NSOM) based on a nanopipette whose distance from the sample surface is controlled using scanning ion conductance microscopy. The light source is based on the general principle of the chemical reaction between a fluorophore in the pipette and ligand in the bath, to produce a highly fluorescent complex that is continually renewed at the pipette tip. In these experiments we used fluo‐3 and calcium, respectively. This complex is then excited with an Ar+ laser, focused on the pipette tip, to produce the light source. This method overcomes the transmission problem of more traditional SNOM probes and has been used to acquire simultaneous high‐resolution topographic and optical images of biological samples in physiological buffer. A resolution of ~220 nm topographic and ~190 nm optical was determined through imaging fixed sea‐urchin sperm flagella. Live A6 cells were also imaged, demonstrating the potential of this system for SNOM imaging of living cells.  相似文献   

9.
For laser spectroscopy at variable temperatures with high spatial resolution a combined scanning near‐field optical and confocal microscope was developed. Rhodamine 6G (R6G) dye molecules dispersed on silver nano‐particles or nano‐clusters were investigated. For optical excitation of the molecules, either an aperture probe or a focused laser spot in confocal arrangement were employed. Raman spectra in the wavenumber range between 300 cm?1 and 3000 cm?1 at room temperatures down to 8.5 K were recorded. Many of the observed Raman lines can be associated with the structure of the adsorbed molecule. Intensity fluctuations in spectral sequences were observed down to 77 K and are indicative of single molecule sensitivity.  相似文献   

10.
A novel technique for scanning near‐field optical microscopy capable of point‐contact current‐sensing was developed in order to investigate the nanometre‐scale optical and electrical properties of electrochromic materials. An apertureless bent‐metal probe was fabricated in order to detect optical and current signals at a local point on the electrochromic films. The near‐field optical properties could be observed using the local field enhancement effect generated at the edge of the metal probe under p‐polarized laser illumination. With regard to electrical properties, current signal could be detected with the metal probe connected to a high‐sensitive current amplifier. Using the current‐sensing scanning near‐field optical microscopy, the surface topography, optical and current images of coloured WO3 thin films were observed simultaneously. Furthermore, nanometre‐scale electrochromic modification of local bleaching could be performed using the current‐sensing scanning near‐field optical microscopy. The current‐sensing scanning near‐field optical microscopy has potential use in various fields of nanometre‐scale optoelectronics.  相似文献   

11.
Scanning near‐field optical microscopy images of metal nanostructures taken with the tetrahedral tip (T‐tip) show a distribution of dark and bright spots at distances in the order of 25–50 nm. The images are interpreted as photonic nanopatterns defined as calculated scanning near‐field optical microscopy images using a dipole serving as a light‐emitting scanning near‐field optical microscopy probe. Changing from a positive to a negative value of the dielectric function of a sample leads to the partition of one spot into several spots in the photonic nanopatterns, indicating the excitation of surface plasmons of a wavelength in the order of 50–100 nm in metal nanostructures.  相似文献   

12.
为了研究大晶粒高质量钙钛矿薄膜对光探测器的影响,制备了晶粒尺寸超过2 μm的MA0.7FA0.3PbI3薄膜,并基于该薄膜制备了光电导型的光探测器(MCP-PD)。基于该薄膜的光探测器在532 nm和3 V偏置电压下获得了高响应度(0.905 A/W)和探测度(3.18×1012 Jones)。在相似性能条件下,基于大晶粒尺寸薄膜制备的MCP-PD还表现出较快的响应速度。实验结果表明,大晶粒尺寸的薄膜降低了晶界对载流子传输的阻碍,提升了光探测器的响应度、探测度及响应速度。  相似文献   

13.
Near-field optical second harmonic microscopy has been applied to imaging of the c/a/c/a polydomain structure of epitaxial PbZr x Ti1– x O3 thin films in the 0 <  x  < 0.4 range. Comparison of the near-field optical images and the results of atomic force microscopy and X-ray diffraction studies show that an optical resolution of the order of 100 nm is achieved. Symmetry properties of the near-field second harmonic signal allow us to obtain good optical contrast between the local second harmonic generation in c- and a-domains. Experimentally measured near-field second harmonic images have been compared with the results of theoretical calculations. Good agreement between theory and experiment is demonstrated.  相似文献   

14.
We numerically evaluated the optical responses of a nonlinear microsphere put on prisms, i.e. in prism‐coupling geometry where the incident light excites the WGM through near‐field coupling. As numerical calculations, we employed the finite‐difference time‐domain method taking into account Kerr nonlinearity. The sphere was coated by a Kerr material with 160 nm thick. The third‐order nonlinear susceptibility of the Kerr material χ(3) was assumed to be 7 × 10?14[m2 V?2]. The diameter of the sphere was assumed to be 1 µm. The numerical results have shown that the control and/or the signal lights can induce the optical switching‐like variation in the reflectance. Such a nonlinear response of the sphere has been interpreted by the variation in the dielectric constant of the sphere due to a Kerr nonlinearity.  相似文献   

15.
The fabrication of silicon cantilever‐based scanning near‐field optical microscope probes with fully aluminium‐coated quartz tips was optimized to increase production yield. Different cantilever designs for dynamic‐ and contact‐mode force feedback were implemented. Light transmission through the tips was investigated experimentally in terms of the metal coating and the tip cone‐angle. We found that transmittance varies with the skin depth of the metal coating and is inverse to the cone angle, meaning that slender tips showed higher transmission. Near‐field optical images of individual fluorescing molecules showed a resolution < 100 nm. Scanning electron microscopy images of tips before and after scanning near‐field optical microscope imaging, and transmission electron microscopy analysis of tips before and after illumination, together with measurements performed with a miniaturized thermocouple showed no evidence of mechanical defect or orifice formation by thermal effects.  相似文献   

16.
The physical properties of electronic devices made by 2,6‐diphenyl anthracene (DPA) are influenced by the microtexture of DPA surfaces. This work focused on the experimental investigation of the 3‐D surface microtexture of DPA thin films deposited on OTS (octadecyltrichlorosilane), HMDS (Hexamethyldisilasane), OTMS (octadecyltrimethoxysilane), and Si/SiO2 (300 nm SiO2 thickness) substrates with 5 and 50 nm thicknesses and 5 and 10 μm scan size. The thin film surfaces were recorded using atomic force microscopy (AFM) and their images were stereometrically analyzed to obtain statistical parameters, in accordance with ASME B46.1‐2009 and ISO 25178‐2: 2012. The results showed the effect of different manufacturing parameters on microtexture values where the granular structure is confirmed in all films. In addition, root mean square is increased by increasing the thickness from 5 to 50 nm for all types of substrates.  相似文献   

17.
CeO2 thin films doped with neodymium oxides for application to gas sensors have been elaborated by the pulsed laser deposition technique. The films were deposited on orientated Si (100) substrates with variable deposition times (t = 90, 180 and 360 s) and molar fractions of Nd2O3 (0, 6.5, 15, 21.5 and 27 at.%). The resulting Nd–CeO2 thin films were characterized by means of X‐ray diffraction analysis, scanning electron microscopy and transmission electron microscopy equipped with EDS (Energy Dispersive Spectrometer) microanalysis. From X‐ray diffraction analyses, it is clearly established that the texture is modified by Nd additions. The preferred (111) orientations of the CeO2 crystals change into the (200) orientation. The morphology of the CeO2 grains changes from triangles, for pure CeO2 thin films, to spherical grains for Nd‐doped films. In addition, cell parameter analyses from X‐ray diffraction data show that a partial chemical substitution of Ce by Nd should occur in the face‐centred cubic lattice of ceria: this should give rise to Ce1‐xNdxO2?z phases with oxygen non‐stoichiometry.  相似文献   

18.
针对电子束蒸发离子辅助沉积的硫化锌薄膜,研究了550℃以下真空热处理对其光学与微结构特性的影响。薄膜光学和微结构特性的测试分析表明:制备后薄膜为类立方结构的ZnS,在337.5nm波长处出现临界特性转折点,随着热处理温度的增加,转折波长两侧的消光系数变化规律相反,折射率和物理厚度呈现下降趋势,薄膜的禁带宽度逐渐增加;在红外波段的薄膜折射率与热处理温度的变化并不显著,在350℃下热处理时消光系数出现转折,主要是由晶粒变小的趋势所致;通过晶相分析,硫化锌薄膜经历了类立方结构到六方结构的转换,与禁带宽度的变化趋势基本一致。分析结果表明,光学特性变化的根本原因是薄膜的微结构特性变化。  相似文献   

19.
In this work, three‐dimensional near‐field imaging of the focused laser spot was studied theoretically and experimentally. In the theoretical simulation, we use the electromagnetic equivalent of the vectorial Kirchhoff diffraction integral to calculate the intensity distribution of the focal region, and a high depolarization is found in high numerical aperture systems (NA = 0.85). The experimental set‐up is based on a near‐field scanning optical microscope (NSOM) system. A high‐NA objective lens is used to focus incident light of various polarizations, and a tapered near‐field optical fibre probe of the NSOM system is used to determine the intensity of the focal field. The results show an asymmetric distribution of the focused intensity with the linear polarized laser beam.  相似文献   

20.
We present the first studies of dyed human hair fibres performed with an apertureless scanning near‐field optical microscope. Samples consisted of 5‐µm‐thick cross‐sections, the hair fibres being bleached and then dyed before being cut. Hair dyed with two molecular probes diffusing deep inside the fibre or mainly spreading at its periphery were investigated at a wavelength of 655 nm. An optical resolution of about 50 nm was achieved, well below the diffraction limit; the images exhibited different optical contrasts in the cuticle region, depending on the nature of the dye. Our results suggest that the dye that remains confined at the hair periphery is mainly located at its surface and in the endocuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号