共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
阐述了支持向量机与最小二乘支持向量机的特点,设计了基于最小二乘支持向量机的控制器,该控制器构成的系统学习与泛化能力强、抗干扰效果好,并利用垃圾焚烧炉的估计模型进行了仿真.仿真结果表明,该方法抗干扰效果好,适应性强. 相似文献
4.
电站燃煤锅炉是大气NOx污染的主要来源之一,建立有效的NOx排放模型是锅炉优化降低NOx的基础。针对热工过程变量之间的强相关和耦合性,利用偏最小二乘方法(partial least squares,PLS)对多工况实炉热态测试数据进行重要变量(variable importance in projection,VIP)信息提取和变量选择(variable selection,VS),把最优的变量子集作为最小二乘支持向量机(least squares support vector machine,LSSVM)的输入,最终得到NOx排放的VS-LSSVM模型。最优的输入变量个数通过留一交叉验证法获取。并将该模型与其他建模方法进行对比,结果表明通过变量选择后建模可以降低模型的复杂度,提高模型的泛化能力。 相似文献
5.
基于最小二乘支持向量机的居民用电预测研究 总被引:1,自引:1,他引:1
随着我国经济的发展和经济结构的调整,居民用电占全社会用电量的比重逐渐增大并且有继续增加的趋势,科学合理地预测居民用电水平将为电力规划与需求侧管理提供决策基础。首先,采用相关系数法进行居民用电关键影响因素的选择。其次,将选取的影响因素作为LS-SVM的输入端,城乡居民用电量作为输出端,用Bayes准则进行SVM的参数选取,通过智能模拟学习,建立了Bayes-LS-SVM居民用电预测模型。最后,以中国某省居民用电量预测为例进行学习以及测试,并将其预测结果与广义回归神经网络预测法及几种常用的居民用电预测方法进行误差对比分析,证明了该组合方法比其它几种方法更精确有效。提出了采用人工智能的方法通过家用电器以及其他影响因素来预测居民用电,克服了以往采用家用电器预测中,家用电器功率以及年利用小时数预测不准确的问题。 相似文献
6.
电力系统短期负荷预测是一项非常重要的工作,准确的短期负荷预测对于电力系统经济、安全、可靠的运行具有特别重要的意义.随着电力系统的日趋复杂化,特别是电力市场的逐步深入,短期负荷预测被赋予了更高的要求.提出了基于负荷日周期性进行前后向外推的数据预处理新方法,为短期负荷预测模型利用这些历史数据奠定了基础.最小二乘支持向量机是新一代机器学习方法,将其应用于电力系统短期负荷预测,在充分利用日周期性和同时刻负荷相近性的基础上,提出了基于最小二乘支持向量机回归算法(LSSVR)的短期负荷预测点模型.该模型通过采用不同天同时刻的负荷样本训练LSSVR来获取负荷的最优线性回归函数,实现了在最小化负荷样本点误差的同时,缩小模型泛化误差的上界,获取了较好的负荷预测性能. 相似文献
7.
8.
9.
应用模糊C均值聚类算法(FCM)对影响电站锅炉燃煤结渣特性的指标预处理,并采用基于粒子群算法优化的SVM对电站燃煤锅炉的结渣特性进行建模。将煤的软化温度t2、硅铝比m(Si O2/Al2O3)、碱酸比m(B/A)、硅比G、综合指数R、无因次炉膛实际切圆直径Dw以及无因次炉膛最高温度tw作为模型的输入变量,结渣程度作为输出变量。应用30组数据对模型进行训练,最后,利用建立的模型对9台锅炉的结渣特性进行评判。结果表明:该模型具有较高的预测正确率,能够有效地减少训练过程中的过拟合度,模型本身具有很好地泛化能力。 相似文献
10.
11.
针对当前风电场发电功率预测时间较长、预测误差较大,易影响风力微电网根据用电负荷变化适时调度及有效电力资源配置的问题,提出了一种基于最小二乘支持向量机(least squares-support vector machine, LS-SVM)的微电网风电功率超短期预测方法。该方法根据风电场数据采集与监视控制(supervisory control and data acquisition, SCADA)系统获取原始功率数据样本,经归一化法预处理,运用网格搜索法确定模型参数,并依据LS-SVM法建立预测系统模型,利用MATLAB工具箱LS-SVM Lab进行仿真实验,跟踪及预测风电功率变化曲线,实现时间跨度小至5分钟的超短期预测。实验验证结果表明,该方法比传统预测方法具有较高的精确度和较强的鲁棒性,为风力微电网优化调度控制工程提供一种新思路。 相似文献
12.
变压器油中溶解气体的体积分数是进行变压器绝缘故障诊断的重要依据,对变压器油中溶解气体进行预测有助于及时预测变压器的故障。将灰色预测方法与支持向量机相结合,通过使用对原始数列进行一次累加生成的处理方法,以提取数列所具有的深层规律特征,建立了基于灰色最小二乘支持向量机的变压器油中溶解气体预测模型,并对最小二乘支持向量机参数的选取进行了优化,最终通过实例与BPNN、灰色模型预测结果相比较,验证了该模型的准确性和有效性。 相似文献
13.
最小二乘支持向量机预测绝缘子等值附盐密度 总被引:2,自引:0,他引:2
考虑到气象因子条件对绝缘子的等值附盐密度影响复杂,难以建立精确数学模型等问题,提出了一种最小二乘支持向量机的绝缘子在一定的气象因子条件下的等值附盐密度预测新模型。以温度、湿度、风速等主要气象因子为输入,绝缘子等值附盐密度为输出,通过最小二乘支持向量机模型,拟合输入与输出之间的复杂非线性函数关系。以现场采集的气候数据为样本对模型进行学习训练,用训练好模型预测绝缘子在一定气候条件下的等值附盐密度。实践表明该方法具有建模速度快、预测精度高、操作简便等优点,不仅克服了常规的BP预测模型的不足,而且性能优于标准支持向量机预测模型。 相似文献
14.
智能电网的建设和电力市场的发展对短期负荷预测的精度和速度提出了更高的要求。应用一种仿生算法来改善负荷预测的精度和运算速度,提出一种基于细菌群落趋药性优化算法的最小二乘支持向量机(least squares-support vector machine based on bacterial colony chemotaxis optimization,BCC-LS-SVM)模型,通过细菌群体趋药性优化算法快速、合理地确定最小二乘支持向量机(least squares-support vectormachine,LS-SVM)的超参数。研究表明,与前馈(back-propagation,BP)神经网络算法和单纯的LS-SVM算法相比,BCC-LS-SVM算法具有较强的全局搜索能力,易于操作,能够实现更高的预测精度及更好的运算速度,更适用于当前中国短期负荷预测的需要。 相似文献
15.
16.
针对微电网群能量管理与协调控制系统适应多微电网间多工况控制策略灵活调整的需要,提出了一种基于模糊最小二乘支持向量机(FLS-SVM)的低压微电网群运行状态实时评估模型。该模型基于传统电力系统运行状态描述方法,建立了微电网群及子微电网安全正常运行的边界条件,以电压偏移率、储能剩余容量及充放电时间、发用电功率等多维度特征向量对子微电网状态分类,应用FLS-SVM对子微电网的实时运行状态进行评估,最后判别出微电网群运行状态。实例计算分析表明,该模型可跟随系统采样周期实时评估,对离、并网条件下子微电网运行状态均能实现准确有效地分类,为微电网群快速判断网内状态并灵活调整控制策略提供依据。 相似文献
17.
为解决谐波阻抗不易直接获取的问题,提出一种基于最小二乘支持向量机LS-SVM(least squares support vector machine)估计系统谐波阻抗的新方法.利用最小二乘支持向量机构建回归模型,引入Lagrange乘子得到拉格朗日函数,并求解得到模型参数.将公共连接点PCC(point of com... 相似文献
18.
19.
用SVRM预测变压器油中溶解气体量 总被引:1,自引:0,他引:1
变压器油中溶解气体体积分数的预测对变压器故障的早期发现,确保电力系统安全运行有着重要意义。针对现有预测方法的不足,提出了基于支持向量回归机(SVRM)的变压器油中溶解气体体积分数的预测方法,在SVRM算法基础上建立了预测模型,其中结合网格法和留一交叉检验法寻求SVRM中最优的参数组合。变压器油中溶解气体体积分数预测分析的实例表明,在同为小样本训练数据的情况下,SVRM比灰色模型有着更为优越的预测效果。研究表明,SVRM模型更适合于变压器油中溶解气体体积分数的预测。 相似文献