首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
《煤矿安全》2015,(11):212-215
结合工程实例,采用数值模拟并考虑煤岩体的应变软化特性,对影响下层煤应力分布规律的因素及下层煤巷道合理位置进行了分析。研究表明:下层煤应力分布受上层煤采高及煤层群埋深影响较小,受上层煤顶板岩性与煤层间距影响较大。位于压力卸载区的巷道围岩中压应力小,剪切塑性范围小;位于应力升高区的巷道围岩中应力强烈集中,剪切破坏严重。下层煤巷道最好布置在采空区下方压力卸载区,且必须加强应力升高区内巷道支护。  相似文献   

2.
近距离煤层开采时,上位煤层的遗留煤柱集中应力会对下位煤层邻近采空区的巷道掘进产生扰动影响。针对下峪口煤矿3#煤层回采巷道掘进时产生的非对称变形破坏及支护困难等问题,结合现场地质条件,采用力学分析、数值模拟和现场试验的方法,探究23306进风巷掘进期间产生的非对称变形机理,并提出合理的巷道支护参数及工艺,改善了巷道围岩条件。研究结果表明:上位煤层遗留煤柱及本煤层邻近采空区的存在导致巷道围岩主应力方向及大小发生变化,而非均匀的应力分布致使巷道围岩塑性区呈现蝶形破坏,巷道顶板水平应力变化幅度大、剪切应力大,造成巷道顶板极度破碎,顶板至上覆采空区间全为塑性区分布,顶板两侧应力及塑性区的差异性分布是造成巷道非对称变形的主要原因;数值模拟得到煤柱内X-Y,X-Z,Z-Z方向的应力受本煤层邻近采空区的影响较大,巷道两侧应力大小不等,致使巷道产生非对称变形;根据巷道围岩的受力状态、工作面地质条件及支护成本,优化了巷道支护参数,现场应用效果良好。  相似文献   

3.
本文针对某矿近距离采空区下5~#煤层回采巷道的合理布置,运用FLAC~(3D)模拟上层煤回采后采空区与煤柱应力分布,回采巷道不同布置方式产生的塑性区。结果表明:(1)3~#煤回采后采空区形成泄压区,煤柱内部及下方应力集中,5~#煤层巷道顶板所受垂直应力与巷道至煤柱距离成反比。(2)巷道外错破坏严重,內错煤柱留设大,重叠布置时顶部出现范围塑性区,采取支护优化可控,从其经济角度考虑巷道采取重叠布置。  相似文献   

4.
针对近距离煤层下大倾角煤层采场围岩控制这一难题,从理论上分析了上位煤层开采后的底板破坏深度,运用数值模拟FLAC3D研究了残留煤柱和采空区下大倾角俯伪斜开采不同区段应力分布特征;针对俯伪斜开采不同区段矿压显现特征,提出并实施了相应的片帮冒顶控制技术及巷道锚索加强支护技术。研究结果表明:当部分工作面及巷道处于煤柱下方时,巷道断面变形破坏量大、工作面煤壁片帮严重,顶板破碎,完整性差。当部分工作面及巷道处于采空区正下方时,易造成工作面冒顶。采取铺锚链网并辅助工字钢和架前链接金属网对破碎顶板和煤壁进行了加固,采用锚索配合矿用工字钢锁U型钢棚技术对煤柱应力集中影响下巷道进行了加强支护。工程实践表明,片帮冒顶得到很好控制,巷道变形量也在可控的范围内。  相似文献   

5.
《煤矿安全》2017,(2):196-199
以嘉乐泉煤矿9号煤二采区及上覆8号煤采空区为背景,研究了下层煤巷道所受到近距离上覆煤层采空区及煤柱的影响。运用FLAC3D有限元软件分析了下层煤回采巷道与上覆煤层采空区及煤柱的水平、垂直相对位置不同时巷道周围的应力分布特征、屈服破坏范围及稳定性。研究表明:位于采空区下的区域为应力降低区,随着与采空区垂直距离增加应力逐渐增大,位于煤柱下的区域为应力升高区,在一定范围内随着距离增加应力逐渐减小。巷道应尽量布置在采空区下应力降低区,同时应内错采空区7 m以上,如遇特殊地段则要加强支护。  相似文献   

6.
温千峰 《煤》2022,(9):39-42
为解决近距离煤层群下行开采下伏煤层受采动影响而引起的巷道围岩控制问题,以官地煤矿23513工作面运输巷道为工程背景,针对近距离采空区下巷道支护技术问题,采用现场调研、数值模拟计算相结合的方法,多角度探究采动影响下巷道应力叠加变化特点、围岩变形特征及破坏规律,提出采用短锚索厚层锚固控制技术,经现场试验,巷道围岩稳定性效果最好,采空区边缘下巷道顶板、帮部变形量减小,巷道围岩应力集中范围缩小,巷道围岩控制效果良好。  相似文献   

7.
采空区下近距离煤层开采时,下层煤回采巷道将受到上煤层采空区遗留煤柱、本煤层相邻工作面动压的影响,针对孙家沟煤矿特厚煤层放顶煤工作面13311回风巷严重的冒顶、两帮内挤和底臌等变形破坏现象,采用现场实测、理论分析及数值模拟等研究方法,探讨了回采巷道失稳机理及主要影响因素。研究表明,13311回风巷变形失稳主要影响因素为迎邻近工作面回采动压掘进、巷道布置方式和巷道支护参数不合理。与上层煤回采巷道垂直布置、巷道支护强度低且迎采动掘进时,下层煤回采巷道容易失稳。为改善13313回风巷围岩稳定性,有效控制巷道变形,根据试验巷道围岩物理力学性质及受力特征,研究提出了有针对性的解决方案:首先改进巷道布置方式,将下煤层回采巷道布置在采空区下,且应距离上煤层采空区遗留煤柱不小于20 m;其次增大护巷煤柱宽度,把区段护巷煤柱宽度增加到20 m以上,减少迎采动掘进动压的影响;最后,采用高预应力全锚索加强支护,提高锚杆锚固段的整体性及其承载能力。据此,在13313回风巷进行了工业性试验并进行了巷道矿压观测,结果表明:经受相邻13311工作面回采动压影响后,区段煤柱整体完整,具有良好的承载性能;锚索受力达到了250~300 kN,约为其破断力的50%,锚索受力增长平稳,较好地控制了巷道离层和围岩变形;13313回风巷顶底板移近量为400 mm左右,两帮移近量为300 mm左右,巷道围岩变形量得到了有效控制,保证了巷道的整体稳定性,取得了良好的支护效果。但是,采用该种巷道布置方式,下层13号煤层13313工作面回采时,因工作面上方11号煤层区段煤柱集中应力的影响,对其顶板和煤壁管理提出了更高的要求,需引起高度重视。  相似文献   

8.
为了探究倾斜煤层沿空掘巷留窄煤柱的合理宽度,采用传统矿压"内外应力场"理论和偏应力第二不变量表征特性对不同宽度煤柱影响下巷道围岩破碎机理与控制展开研究。通过建立沿空斜顶巷道力学模型,推导出倾斜煤层"内应力场"影响范围为12.2~12.8 m。与水平煤层不同,倾斜煤层巷道顶板围岩在一定深度开始受到其相邻采空区应力影响,引起偏应力值再次攀升,计算应力波动值结合巷道围岩位移变化情况,最终确定合理窄煤柱宽度为10 m。异形巷道断面特征导致围岩应力分布和破碎呈现不对称性,继而提出顶板预应力锚杆+高强度单体锚索+桁架锚索支护耦合作用下的非对称围岩控制技术,最后经50 m试验段作为工程检验,成功应用于工程现场。  相似文献   

9.
以霍州煤电汾河公司三交河煤矿2~#煤层分叉后的2-1煤层、2-2煤层为工程背景,通过近距煤层采空区下巷道不同布置方式的矿压特征分析,基于低应力区易于维护的原则,确定出2-2下部煤层巷道采用同向内错20 m的布置方案。采用现场钻孔窥视确定巷道顶板厚度的变化及顶板岩性情况,并提出了3种不同的顶板支护方案:高预应力锚网索支护、锚杆-架棚联合支护、工字钢架棚支护。通过现场试验与监测表明:近距离下层煤层巷道采用同向长距离内错的布置方式,锚杆最大工作载荷63 k N,巷道最大变形量30 mm,围岩变形得到了有效控制。  相似文献   

10.
针对近距离煤层群上煤层留设的区段煤柱在煤柱下方形成一定区域的应力增高区,下煤层回采巷道受集中应力影响维护困难、严重影响正常生产这一难题,结合新柳矿地质条件采用UDEC2D数值计算及现场实测研究了煤柱下方底板集中应力分布特征,分析了下煤层回采巷道的布置方式对巷道围岩变形的影响,研究表明:上煤层残留煤柱越大,底板应力集中系数越大;在上煤层残留煤柱集中应力影响和本煤层工作面采动引起的应力重新分布耦合作用下,回采巷道顶底板及两帮移近量接近2000mm,巷道变形破坏严重。提出把巷道布置在采空区下方应力降低区内,减少本煤层区段煤柱宽度以及加强巷道超前支护可保证下煤层巷道稳定。  相似文献   

11.
为解决近距离煤层上层煤遗留煤柱对下层煤回采巷道造成的扰动问题,以山西世德孙家沟煤矿13313特厚煤层工作面进风巷为工程背景,从围岩应力、围岩强度与支护方式三个方面结合FLAC3D数值模拟进行了系统研究,结果表明:遗留煤柱下方形成应力集中区,遗留煤柱尺寸越大,下方应力峰值越小,而下层煤巷道与煤柱外错25m时所处应力环境得到极大改善。进一步进行巷道围岩强度原位测试,并确定采用高预应力强力支护技术方案。矿压监测结果显示巷道支护方案合理,能够满足生产要求,解决了该矿煤柱下特厚煤层动压巷道支护技术难题。  相似文献   

12.
为了研究上煤层采空区对其下伏近距离特厚煤层的影响,确定下煤层巷道布置内错距离;以国投塔山煤矿为背景,基于有限差分数值方法,运用双屈服本构模型实时修正手段,模拟了上煤层采空区垮落带岩体压实特性,阐明了采空区下伏煤岩层内应力场传递规律及塑性破坏发育范围;结合理论分析及现场钻孔窥视结果,验证了数值结果的可靠性,确定了下煤层回采巷道布置内错距离。结果表明:上煤层采空区内遗留区段煤柱下方应力场在下煤层中形成近似"正梯形"影响范围,上下影响宽度分别为32、56 m;遗留区段煤柱下方塑性区在下煤层中呈"倒梯形"分布,上下塑性区宽度分别为81.36、61.47 m;结合理论分析及现场钻孔窥视结果,最终确定下煤层回采巷道内错距离应为13.5 m。  相似文献   

13.
王志强  仲启尧  王鹏 《煤矿安全》2020,(1):216-221,228
为研究在高应力软岩条件下窄煤柱留设问题,以曙光矿2~#煤层开采为工程背景,采用理论分析与数值模拟相结合的方法,得出错层位外错式沿空掘巷窄煤柱的确定方法,即从上区段采空区侧向支承应力分布规律、护巷煤柱宽度的理论计算、煤柱垂直应力和煤柱塑性区分布4个方面综合考虑护巷煤柱的宽度。理论计算得出破裂区为3.35 m,塑性区为5.76 m,利用数值模拟得出煤柱合理留设宽度为3.37~5.13 m。通过对不同煤柱宽度下巷道围岩应力分布进行数值分析,结果表明:当煤柱宽度为4 m时,巷道围岩变形小。  相似文献   

14.
为了研究浅埋近距离煤层中下煤层回撤通道护巷煤柱合理留设宽度,采用理论分析、相似模拟和数值模拟的研究方法,研究了下煤层回撤通道护巷煤柱覆岩结构特征,确定了采空区边缘下方回撤通道护巷煤柱合理留设宽度。研究表明:在上煤层开采完毕后,由于上煤层停采线煤柱的原因,下煤层回撤通道因布置位置不同将造成护巷煤柱的覆岩结构存在较大差异,从而导致煤柱所承载的荷载出现不同;在煤柱宽度留设时,从采空区压实区到卸压区应逐渐减小,从卸压区到上煤层实体煤下应逐渐增大,采空区压实区煤柱宽度应小于实体煤区。通过建立工况条件下采空区边缘下方回撤通道数值模拟模型,确定了护巷煤柱合理留设宽度为18 m。  相似文献   

15.
为了探究倾斜煤层沿空巷道合理煤柱宽度留设,采用理论分析、数值模拟和工业性试验相结合的方式开展研究。结果表明:通过建立沿空巷道基本顶力学模型,推导出倾斜煤层内应力场影响范围为12.2~12.8 m;数值模拟不同煤柱宽度下巷道围岩偏应力分布特征,最终确定合理窄煤柱宽度为10 m;继而提出顶板预应力锚杆+高强度单体锚索+桁架锚索支护耦合作用下的非对称围岩控制技术,现场矿压观测结果表明巷道围岩稳定性良好。  相似文献   

16.
针对特厚煤层中应用错层位外错式沿空掘巷与相邻巷道的立体化联合支护机理展开研究。首先理论分析了错层位外错式沿空掘巷布置特点,发现:① 沿煤层顶板及起坡下方的三角煤体保持稳定且对实体煤提供侧向支承应力σx作用,因此一侧采空情况下实体煤从上至下出现了新的变化,即侧向支承应力从0增加至σx;② 依据巷道布置层位与侧向支承应力的不同,将特厚煤层从上至下进行了分区,分别为一侧采空实体煤分区、过渡区与弹性区;③ 布置接续工作面沿空掘巷时,其围岩处于弹性状态,巷道顶部属于一侧采空实体煤内的破碎区、塑性区,因此承载小,也即实现了围岩稳定与载荷低二者之间的统一。利用相邻两条巷道高、低不同这一立体化空间关系,提出相邻巷道的立体化联合支护技术,分析其特点包括:① 沿煤层顶板布置巷道,主动支护可打入深部稳定岩层内;② 通过加强一侧采空实体煤内的加固作用,为相邻沿煤层底板巷道提供锚固点;③ 底板沿空掘巷顶部支护体可深入顶板岩层、联合锚固区与过渡区,可实现全长锚固以更加充分发挥支护作用。为了验证前述理论成果,采用数值模拟进行计算分析,发现:① 采用错层位外错式沿空掘巷技术,显著改善了沿空巷道围岩性质与应力分布现状,实现了低应力与围岩稳定二者的统一,且验证了前述对错层位外错式沿空掘巷特厚煤层纵向分区的成果;② 零原岩应力场条件下联合支护效果较为明显,沿顶巷道顶板锚索深入基本顶段、巷帮一侧锚固段、沿底巷道顶板锚索深入岩层内与联合锚固区均出现应力集中作用,显著改善了沿底巷道单巷支护受顶煤厚度限制无法形成有效锚固点的现状;③ 在对实际工程背景的数值计算发现,与沿底巷道围岩大范围破坏且无法控制相比,采用错层位外错式沿空掘巷相邻巷道联合支护技术可显著控制沿空巷道围岩破坏范围。  相似文献   

17.
针对西北地区某矿近距离煤层开采分组集中大巷稳定性问题,建立了近距离煤层开采分组集中大巷稳定性数值计算模型,分析了近距离煤层开采后顶板位移、顶板应力、围岩应力演化规律、锚杆(索)预应力场以及裂隙场演化规律。结果表明:(1)近距离煤层开采之后,大巷煤柱两侧的顶板发生断裂垮落,距离大巷煤柱越远,顶板下沉量越大;(2)随着近距离煤层开采,大巷之间保护煤柱的集中应力逐渐消失,工作面两侧大巷保护煤柱中出现10 MPa的应力集中现象,应力降低区范围大大增加,应力转移到左右工作面大巷保护煤柱中;(3)随着煤层开采,大巷围岩在地应力场与锚杆(索)预应力场的叠加场影响最小主应力的压应力逐渐增加,并在巷道周围形成了一个闭合连续的压应力带,其范围不断增大,最小主应力值逐渐减小,且下层煤的开采使上层煤的大巷锚杆(索)所受的力增加;(5)下层煤的开采使得上层煤两侧工作面大巷保护煤柱的剪切破坏带深度增加,最大破坏深度增加14 m,下层煤的大巷只在两帮出现深度为2 m的剪切破坏区,而两侧工作面的大巷保护煤柱出现10 m的剪切破坏。  相似文献   

18.
增子坊矿301盘区5#煤层辅运巷在上覆采空区煤柱应力、区域地质构造以及围岩自身松软等因素综合作用下出现围岩变形量大、支护困难等问题.为解决此问题,拟采用高强锚注技术控制围岩,并对巷道支护方案进行设计.现场应用后,巷道顶板、巷帮变形得以有效控制,其中顶板、巷帮变形分别控制在28 mm、20 mm以内,可满足巷道后续使用需...  相似文献   

19.
以温庄煤业15106回风巷沿空掘巷的巷道布置及围岩控制为工程背景,借助现场实测、理论分析等手段,依据UDEC多边形破坏准则建立了Trigon数值模型,分析15106回风巷邻近采空区侧向支承应力分布范围,并进一步分析了不同宽度煤柱内应力、裂隙扩展特征及巷道围岩变形规律,基于裂隙闭合区长度确定了15106回风巷合理窄煤柱宽...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号