首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用酶-碱法从酵母自溶残渣中提取β-1,3-D-葡聚糖,研究了提取工艺,并通过正交试验得出理想的酶处理工艺条件为:酶添加量为1600 IU/g,酶解3 h,pH8,温度60℃。碱处理工艺条件为:用60 mL 2%NaOH溶液在75℃处理酶解后的沉淀物6 h。冷冻干燥后得到成品葡聚糖,成品得率21.38%,其中多糖含量为92.17%,蛋白质含量为1.32%,水分含量为5.53%,该工艺具有得率高、蛋白质含量低的特点。应用红外光谱对糖分进行分析,成品为高纯度的酵母葡聚糖。  相似文献   

2.
采用酶-碱法从酵母自溶残渣中提取β-1,3-D-葡聚糖,通过正交试验得出最佳碱处理工艺条件为酶解后的沉淀物用60mL2%氢氧化钠溶液75℃处理6h,经冷冻干燥后,成品葡聚糖的得率为21.38%,其中多糖含量为92.17%,蛋白质含量为1.32%,水分含量为5.53%,酶-碱法处理工艺具有葡聚糖得率高、蛋白质含量低的特点。  相似文献   

3.
以实验室制备的酵母(1→3)-β-D-葡聚糖为原料,通过酶解法制备水溶性酵母(1→3)-β-D-葡聚糖,并对其结构和生物活性进行了研究。以水溶性酵母葡聚糖得率为指标,通过单因素和正交实验,确定了酵母(1→3)-β-D-葡聚糖酶解的工艺条件。优化后的酶解条件为:酶活浓度0.15 U/mL,底物质量浓度0.5 g/100 mL,酶解温度40℃,pH3.5,酶解时间0.5 h,该酶解条件下水溶性酵母葡聚糖得率为80.3%。红外光谱分析表明,水溶性葡聚糖仍具有(1→3)-β-D-葡聚糖分子构型,刚果红实验表明其具有三螺旋结构。活性实验表明,水溶性葡聚糖能有效提高E.coli诱导的患腹膜炎小鼠的存活率。  相似文献   

4.
酵母β-1,3-D-葡聚糖硫酸酯制备工艺的研究   总被引:1,自引:0,他引:1  
研究了酵母β-1,3-D-葡聚糖硫酸酯制备工艺,通过单因素实验和正交实验,确定了制备高取代度的酵母β-1,3-D-葡聚糖硫酸酯的最佳工艺条件为:0.3g酵母β-1,3-D-葡聚糖分散于10mL二甲基甲酰胺中,磁力搅拌使其充分悬浮,加入浓度为15%氯磺酸的酯化剂15mL,在60℃水溶下反应3h.制备出取代度高达0.88的酵母β-1,3-D-葡聚糖硫酸酯,且红外光谱表明,酵母β-1,3-D-葡聚糖分子中已经成功引入了硫酸基基团.  相似文献   

5.
β-1,3-1,4-D-葡聚糖酶是一类专一性降解β-1,3-1,4-葡糖苷键中的β-1,4-糖苷键,产生小分子还原糖的水解酶,广泛应用于啤酒工业和饲料工业中。本研究根据毕赤酵母密码子偏好性优化β-1,3-1,4-葡聚糖酶基因序列,采用PCR法将其插入毕赤酵母表达载体pPICZαA,经SacI线性化后电击整合入毕赤酵母X-33基因组,构建重组酵母;经菌落PCR验证和摇瓶筛选,获得一株X-33/pPICZαA-bgl,甲醇诱导96h后,酶活力达308.5U/mL,经SDS-PAGE电泳,实际蛋白分子量约为33ku。β-1,3-1,4-D-葡聚糖酶最适反应pH为5.0,最适反应温度为50℃。   相似文献   

6.
采用超声-酶-碱法从啤酒废酵母中提取β-1,3-葡聚糖,在超声波预处理和酶解最佳条件的同时,利用响应曲面法研究分析NaOH浓度、温度、用量和时间对β-1,3-葡聚糖得率、纯度和蛋白质含量的影响.试验结果表明,超声波处理后破壁率为94.22%;酶解后蛋白质去除率为62.82%;当加入2.05%的NaOH 30.50 mL,74℃处理5.7 h,β-1,3-葡聚糖的得率为10-21%,纯度为88.14%,蛋白质含量为1.19%.超声-酶-碱法处理工艺具有β-1,3-葡聚糖得率、纯度高、蛋白质含量低及提取时间短的特点.  相似文献   

7.
采用β-葡聚糖酶对酵母β-葡聚糖进行酶解,利用单因素和响应面实验,以水溶性酵母β-葡聚糖得率为指标优化酶解工艺,并对水溶性酵母β-葡聚糖与原酵母β-葡聚糖的结构和热稳定性进行了研究。最佳酶解条件:底物质量浓度1.14 g/100 mL,酶活浓度0.16 U/mL,温度44℃,pH 4.2,水溶性酵母β-葡聚糖得率为39.89%。红外光谱分析结果表明,水溶性酵母β-葡聚糖与原酵母β-葡聚糖的糖苷键型均为β构型,分子构象相同。热稳定性分析表明,水溶性酵母β-葡聚糖和原酵母β-葡聚糖的特征分解温度分别为356℃和360℃,终止分解温度分别为740℃和780℃,热稳定性差异不大。  相似文献   

8.
对啤酒酵母中β-(1,3)-D-葡聚糖(用碱-酶法从啤酒废酵母中提取)的水解条件进行了优化.研究表明影响β-(1,3)-D-葡聚糖水解条件的因素顺序依次为:预水解硫酸浓度>水解温度>水解硫酸浓度>水解时间;水解参数为:预水解硫酸浓度12mol/L、水解硫酸浓度2mol/L、水解温度100℃、水解时间24h.此条件下用苯酚-硫酸法测得的β-(1,3)-D-葡聚糖含量为83.1%.  相似文献   

9.
提取酵母细胞壁中β-D-葡聚糖的新方法   总被引:1,自引:0,他引:1  
研究了一种从酵母细胞壁中提取β-D-葡聚糖的新方法,包括高温抽提、脱脂和酶解3部分。在高温条件下分别考察了pH、料液比、温度及时间对β-D-葡聚糖得率和纯度的影响。结果表明,高温提取的最佳工艺条件为:料液比为1:15、pH=8、温度120℃,时间3 h,β-D-葡聚糖得率为61.05%,纯度达到41.51%;为了进一步提高β-D-葡聚糖的纯度,采用了脱脂和酶解的方法去除粗多糖中的蛋白质、脂质等杂质,最终产品的纯度达到78.31%。  相似文献   

10.
酶处理纯化啤酒酵母β-1,3-葡聚糖的研究   总被引:2,自引:1,他引:1  
采用酶处理对酵母残渣中β-1,3-葡聚糖进行纯化,研究了酶处理纯化的最佳工艺.结果表明:酵母残渣中添加208U/g底物的木瓜蛋白酶,在50℃、pH6.0条件下酶解8h,蛋白质去除率可达到62.82%,β-1.3-葡聚糖最终纯度为90.50%,得率为11.00%,经紫外光谱、薄层层析和性质分析为高纯度的β-1,3-葡聚糖,且回收到0.348g/L多肽、氨基酸含量丰富的蛋白水解液.  相似文献   

11.
自溶-酶-碱法提取啤酒酵母中β-1,3-葡聚糖的工艺研究   总被引:9,自引:0,他引:9  
本文通过正交试验,对自溶-酶-碱法提取废啤酒酵母中β-1,3-葡聚糖的最佳工艺进行了研究.结果表明其最佳工艺条件为:啤酒酵母于50℃自溶6h后,添加100U/湿酵母木瓜蛋白酶,继续自溶18h后离心,沉淀用2%的NaOH溶液分散,于80℃水浴处理3h后离心,沉淀用蒸馏水清洗3~4次后进行真空冷冻干燥,粉碎得成品.成品得率10.80%,其中多糖含量87.70%、蛋白质含量0.45%、水分含量6.72%、灰分含量1.05%,具有得率高、纯度高、蛋白质含量低的特点.  相似文献   

12.
啤酒废酵母泥综合利用的研究   总被引:1,自引:0,他引:1  
研究了利用啤酒废酵母泥制备酵母抽提物和β-葡聚糖的相关工艺条件。结果表明,自溶-酶联法是制备啤酒酵母抽提物的理想方法,用该法制备啤酒酵母抽提物的抽提率达68.6%、蛋白质利用率达87.3%,抽提物中蛋白质、游离氨基酸态氮和复合核苷酸的含量分别达10.6%、4.2%和3.9%,远高于普通自溶工艺的技术指标;将自溶后的酵母残渣进一步制备成β-1,3-葡聚糖,通过正交试验获得了其优化的工艺条件:酵母浓度10%、碱浓度2%、反应温度80℃、反应时间4 h、碱处理次数4次。在优化的工艺条件下,β-1,3-葡聚糖得率达26.8%、成品中杂蛋白含量仅0.4%、β-葡聚糖分子质量为158ku。实现了啤酒废酵母泥的综合利用和高值化。  相似文献   

13.
酵母β-葡聚糖具有良好的生物活性,然而溶解性差,应用范围较窄。为提高酵母β-葡聚糖的溶解性,扩大其应用范围,以水溶性β-葡聚糖得率为指标,考察酶添加量、底物质量浓度、温度、时间等因素对得率的影响,并利用响应面试验优化工艺,比较酶解前、后酵母β-葡聚糖的功能性质及结构的变化。结果表明:在酶添加量4.30%,底物质量浓度15 mg/mL,酶解温度45 ℃,酶解时间83 min的条件下,水溶性β-葡聚糖得率为56.12%,溶解性达89.74%,分子质量降为2.99×106,6.68×104 u和1.40×104 u,D[4,3]由67.49 μm降至38.25 μm,热稳定性改善。红外图谱表明:酵母β-葡聚糖结构无明显变化,仍以β-1,3-糖苷键连接。圆二色谱表明:水溶性β-葡聚糖的不对称性增加,具有高度有序的结构。扫描电镜表明:酵母β葡聚糖由完整的颗粒变为杂乱无章的片状结构。  相似文献   

14.
固定化酶是酵母表面展示技术的1个重要应用方向。本文应用食品级酵母展示表达系统进行表达,成功获得具有生物活性且固定在酿酒酵母细胞表面的β-1,3-1,4-葡聚糖酶,并测定其酶学性质。结果表明,与分泌表达的自由酶相比,展示表达的β-1,3-1,4-葡聚糖酶的酶学性质发生了改变。其最适温度为60℃,热稳定性增强。50℃保温3 h,对酶活几乎没有影响。60℃保温1 h后的酶活为初始酶活的129.2%。随着该温度下保温时间的延长,酶活迅速下降,保温3h后的酶活为初始酶活的64.6%。70℃保温1 h,酶活增加到初始酶活的109.2%;1 h后酶活开始下降;70℃保温3 h后残留酶活仅为初始酶活的35.8%。展示表达的β-1,3-1,4-葡聚糖酶最适pH为6.0,在pH 4~7范围内酶的稳定性较好。  相似文献   

15.
β-1,3葡聚糖酶高产菌株的筛选及其产酶条件研究   总被引:11,自引:0,他引:11  
从土壤中分离筛选出一株β-1,3葡聚糖酶活较高的菌株,编号为M014,初步鉴定为木霉。研究了碳源、氮源、培养温度与时间等因素对M014产酶的影响。实验结果表明,MOl4在含3%茯苓粉、0.5%酵母膏及一些无机盐的液体培养基中(pH6.0),于30℃,150r/min振摇培养6d,β-1,3葡聚糖酶活最高,达到4.95U/ml。另外,还就β-1,3葡聚糖酶的酶解条件进行了研究,结果显示,β-1,3葡聚糖酶的最适反应pH为4.5,最适反应温度为60℃.粗酶液在40℃和50℃保温12h,酶活基本稳定,最适反应温度为60℃保温时,酶活迅速下降。  相似文献   

16.
啤酒废酵母酶促自溶胞壁残渣中葡聚糖的提取   总被引:1,自引:0,他引:1  
啤洒废酵母酶促自溶制备酵母抽提物后,其残存的胞壁残渣中还存有大量的碱不溶性β-1,3-D-葡聚糖.采用碱一酶法制备碱不溶性β-1,3-D-葡聚糖,以多糖干重和多糖纯度为主要指标,研究了影响葡聚糖提取的外加碱液浓度、作用时间、作用温度、碱性蛋白酶添加量因素,并进行正交试验,同时对中和用酸及洗脱工艺进行优化,使杂多糖干重降低了7.27%,而多糖纯度提高,19.04%,多糖提取率提高了10.41%.  相似文献   

17.
啤酒废酵母中蛋白质提取工艺的研究   总被引:1,自引:0,他引:1  
刘蓉  邓泽元  李瑞贞 《食品科学》2007,28(10):168-170
本研究在采用诱导剂 自溶法的基础上,结合多种提取方法,通过对比和正交试验确定啤酒废酵母中蛋白质的最佳提取工艺及参数,并用胃蛋白酶-胰蛋白酶联合消化法测定提取蛋白质的消化率。实验结果表明使用诱导剂 自溶 酶解法提取较好,最佳工艺条件为:温度50℃、pH值7.0、酶解自溶时间为40h、中性蛋白酶用量25U/g干酵母、β-葡聚糖酶用量15U/g干酵母。在此条件下,粗蛋白质得率达27%。啤酒废酵母提取的粗蛋白质体外消化率为81.06%。  相似文献   

18.
从农家自制辣椒酱中分离纯化了一株耐盐酵母,通过β-1,3葡聚糖酶鉴定(刚果红染色法)确定其具有合成、分泌胞外β-1,3葡聚糖酶特性。Na Cl耐受性研究确定其具有高耐盐性,能经144 h的适应期后在24%Na Cl的培养基B中稳定生长120 h。经26s r RNA基因序列分析鉴定为鲁氏酵母A(Z.Rouxii A)。Z.Rouxii A发酵培养中存在二次生长现象,其生物量在24 h和48 h达到峰值,分别比18 h的6.38 g/L提高了46.55%和87.15%,而21 h后葡萄糖浓度仅维持在1.57 g/L左右,说明:Z.Rouxii A生长过程中合成、分泌的β-葡聚糖酶持续降解发酵培养基中添加的β-1,3-1,6-葡聚糖,为其二次生长提供了碳源和能源。Z.Rouxii A的β-1,3-葡聚糖酶活性曲线与生长曲线基本趋势一致,最大酶活性随着菌体自溶(12 h、24 h和48 h)而迅速降低,48 h达到酶活峰值15.23 U/m L,说明:Z.Rouxii A的β-1,3-葡聚糖酶合成与细胞生长偶联。以上数据确认该菌为产β-葡聚糖酶高耐盐鲁氏酵母。  相似文献   

19.
碱-酶法提取啤酒酵母粉中β-(1,3)-D-葡聚糖   总被引:1,自引:0,他引:1  
以啤酒酵母粉为原料,综合考虑提取率、蛋白质含量和多糖含量3个指标,在单因素实验的基础上,采用正交实验,得出碱-酶法提取废啤酒酵母中β-(1,3)-D-葡聚糖的理想工艺条件:酵母粉经过水洗,脱色后,按照150mL∶10g的比例加入3%的NaOH溶液,在80℃水浴条件下水解2h,离心,洗涤,调整pH至8.5~9.0,再加入600U/g碱性蛋白酶(以干酵母粉计),在55℃下水解24h,离心,沉淀,干燥得到成品。β-(1,3)-D-葡聚糖的提取率为13.8%,产品多糖含量85.2%、蛋白质含量1.2%、水分9.2%,产品为乳白色粉状固体,色度为L值83.07、a值2.12、b值8.86。  相似文献   

20.
以葡萄酒泥废酵母为试材,采用高压均质法和冻融法协同破碎酵母细胞壁,并辅以复合蛋白酶和脂肪酶酶解技术,研究多重破壁技术对β-葡聚糖纯度的影响。在单因素实验基础上,利用Box-Behnken实验设计原理,以酵母浓度、均质时间和冻融加水量为实验因素,以β-葡聚糖纯度为响应值,优化葡萄酒泥酵母β-葡聚糖提取工艺。结果表明:葡萄酒泥酵母β-葡聚糖最优提取工艺为均质压力70 MPa,酵母浓度13%,均质时间34 min,冻融加水量25%,在此条件下提取所得酵母β-葡聚糖纯度为91.69%,得率为13.23%,该方法为酵母葡聚糖的开发利用提供了参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号