首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ensemble selection, which aims to select a proper subset of the original whole ensemble, can be seen as a combinatorial optimization problem, and usually can achieve a pruned ensemble with better performance than the original one. Ensemble selection by greedy methods has drawn a lot of attention, and many greedy ensemble selection algorithms have been proposed, many of which focus on the design of a new evaluation measure or on the study about different search directions. It is well accepted that diversity plays a crucial role in ensemble selection methods. Many evaluation measures based on diversity have been proposed and have achieved a good success. However, most of the existing researches have neglected the substantial local optimal problem of greedy methods, which is just the central issue addressed in this paper, where a new Ensemble Selection (GraspEnS) algorithm based on Greedy Randomized Adaptive Search Procedure (GRASP) is proposed. The typical greedy ensemble selection approach is improved by the random factor incorporated into GraspEnS. Moreover, the GraspEnS algorithm realizes multi-start searching and appropriately expands the search range of the typical greedy approaches. Experimental results demonstrate that the newly devised GraspEnS algorithm is able to achieve a final pruned subensemble with comparable or better performance compared with its competitors.  相似文献   

2.
The Valued Constraint Satisfaction Problem (VCSP) is a generic optimization problem defined by a network of local cost functions defined over discrete variables. It has applications in Artificial Intelligence, Operations Research, Bioinformatics and has been used to tackle optimization problems in other graphical models (including discrete Markov Random Fields and Bayesian Networks). The incremental lower bounds produced by local consistency filtering are used for pruning inside Branch and Bound search.In this paper, we extend the notion of arc consistency by allowing fractional weights and by allowing several arc consistency operations to be applied simultaneously. Over the rationals and allowing simultaneous operations, we show that an optimal arc consistency closure can theoretically be determined in polynomial time by reduction to linear programming. This defines Optimal Soft Arc Consistency (OSAC).To reach a more practical algorithm, we show that the existence of a sequence of arc consistency operations which increases the lower bound can be detected by establishing arc consistency in a classical Constraint Satisfaction Problem (CSP) derived from the original cost function network. This leads to a new soft arc consistency method, called, Virtual Arc Consistency which produces improved lower bounds compared with previous techniques and which can solve submodular cost functions.These algorithms have been implemented and evaluated on a variety of problems, including two difficult frequency assignment problems which are solved to optimality for the first time. Our implementation is available in the open source toulbar2 platform.  相似文献   

3.
Iterated greedy algorithms belong to the class of stochastic local search methods. They are based on the simple and effective principle of generating a sequence of solutions by iterating over a constructive greedy heuristic using destruction and construction phases. This paper, first, presents an efficient randomized iterated greedy approach for the minimum weight dominating set problem, where—given a vertex-weighted graph—the goal is to identify a subset of the graphs’ vertices with minimum total weight such that each vertex of the graph is either in the subset or has a neighbor in the subset. Our proposed approach works on a population of solutions rather than on a single one. Moreover, it is based on a fast randomized construction procedure making use of two different greedy heuristics. Secondly, we present a hybrid algorithmic model in which the proposed iterated greedy algorithm is combined with the mathematical programming solver CPLEX. In particular, we improve the best solution provided by the iterated greedy algorithm with the solution polishing feature of CPLEX. The simulation results obtained on a widely used set of benchmark instances shows that our proposed algorithms outperform current state-of-the-art approaches.  相似文献   

4.
Constraint satisfaction problems are ubiquitous in artificial intelligence and many algorithms have been developed for their solution. This paper provides a unified survey of some of these, in terms of three classes: (i) tree search, (ii) arc consistency (AC), and (iii) hybrid tree search/arc consistency algorithms. It is shown that several important algorithms, when slightly rearranged, are of the latter hybrid form, but with arc consistency components that do not necessarily achieve full arc consistency at the tree nodes. Accordingly, we define several new partial AC procedures, AC1/5, AC1/4, AC1/3, and AC½, analogous to the well-known full AC algorithms which Mackworth has called AC1, AC2, and AC3. The fractional suffixes on our AC algorithms are roughly proportional to the degree of partial arc consistency they achieve. Unlike traditional versions, our AC algorithms (full and partial) are presented in a parameterized form to allow them to be embedded efficiently at the nodes of a tree search process. Algorithm complexities are compared empirically, using the n-queens problem and a new version called confused n-queens. Gaschnig's Backmarking (a tree search algorithm) and Haralick's Forward Checking (a hybrid algorithm) are found to be the most efficient. For the hybrid algorithms, we find that it pays to do little arc consistency processing at the nodes, incurring more nodes, but sufficiently reducing the work per node so as to obtain less work over the whole tree. The unified view taken here suggests several new algorithms. Preliminary results show one of these to be the best algorithm so far.  相似文献   

5.
Multi-dimensional classification (MDC) is the supervised learning problem where an instance is associated with multiple classes, rather than with a single class, as in traditional classification problems. Since these classes are often strongly correlated, modeling the dependencies between them allows MDC methods to improve their performance – at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most popular and highest-performing methods for multi-label classification (MLC), a particular case of MDC which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes, both for finding a good chain sequence and performing efficient inference. Our algorithms remain tractable for high-dimensional data sets and obtain the best predictive performance across several real data sets.  相似文献   

6.
We extend algorithms for local arc consistency proposed in the literature in order to deal with (absorptive) semirings that may not be invertible. As a consequence, these consistency algorithms can be used as a pre-processing procedure in soft Constraint Satisfaction Problems (CSPs) defined over a larger class of semirings, such as those obtained from the Cartesian product of two (or more) semirings. One important instance of this class of semirings is adopted for multi-objective CSPs. First, we show how a semiring can be transformed into a novel one where the + operator is instantiated with the least common divisor (LCD) between the elements of the original semiring. The LCD value corresponds to the amount we can “safely move” from the binary constraint to the unary one in the arc consistency algorithm. We then propose a local arc consistency algorithm which takes advantage of this LCD operator.  相似文献   

7.
The Golomb ruler problem is a very hard combinatorial optimization problem that has been tackled with many different approaches, such as constraint programming (CP), local search (LS), and evolutionary algorithms (EAs), among other techniques. This paper describes several local search-based hybrid algorithms to find optimal or near-optimal Golomb rulers. These algorithms are based on both stochastic methods and systematic techniques. More specifically, the algorithms combine ideas from greedy randomized adaptive search procedures (GRASP), scatter search (SS), tabu search (TS), clustering techniques, and constraint programming (CP). Each new algorithm is, in essence, born from the conclusions extracted after the observation of the previous one. With these algorithms we are capable of solving large rulers with a reasonable efficiency. In particular, we can now find optimal Golomb rulers for up to 16 marks. In addition, the paper also provides an empirical study of the fitness landscape of the problem with the aim of shedding some light about the question of what makes the Golomb ruler problem hard for certain classes of algorithm.  相似文献   

8.
最大节约原则下单倍型推导问题的实用算法   总被引:1,自引:1,他引:0  
张强锋  车皓阳  陈国良  孙广中 《软件学报》2005,16(10):1699-1707
在疾病的易感基因研究和药物反应实验中,常常需要知道单倍型,而不仅仅是基因型数据.但是直接通过生物学实验手段来测定单倍型在时间和成本上消耗过大,所以在实验室里往往仅测得基因型,而通过一些计算手段来推导出单倍型.不同于Clark著名的单倍型推导模型,Gusfield和Wang等人提出了一种通过基因型样本推导单倍型的新模型.这种模型试图按照最大节约原则去寻找可以解释基因型样本的最小单倍型集合.这种基于节约原则的模型克服了Clark模型的一些缺陷.提出了节约原则模型的一个多项式时间的贪心算法以及一种把贪心策略和分支限界策略集合在统一框架下的复合算法.相对于Wang原来提出的分支限界完全算法,贪心的近似算法运行快得多,而且同时保持了比较准确的推导结果.新的复合算法也是一种完全算法.实验结果表明,与原来的分支限界算法相比,复合算法可以极大地提高运行效率以及可应用的实例规模.  相似文献   

9.
Table constraints play an important role within constraint programming. Recently, many schemes or algorithms have been proposed to propagate table constraints and/or to compress their representation. In this paper, we describe an optimization of simple tabular reduction (STR), a technique proposed by J. Ullmann to dynamically maintain the tables of supports when generalized arc consistency (GAC) is enforced/maintained. STR2, the new refined GAC algorithm we propose, allows us to limit the number of operations related to validity checking and search of supports. Interestingly enough, this optimization makes simple tabular reduction potentially r times faster where r is the arity of the constraint(s). The results of an extensive experimentation that we have conducted with respect to random and structured instances indicate that STR2 is usually around twice as fast as the original STR, two or three times faster than the approach based on the hidden variable encoding, and can be up to one order of magnitude faster than previously state-of-the-art (generic) GAC algorithms on some series of instances. When comparing STR2 with the more recently developed algorithm based on multi-valued decision diagrams (MDDs), we show that both approaches are rather complementary.  相似文献   

10.
Multiple instance learning (MIL) is a binary classification problem with loosely supervised data where a class label is assigned only to a bag of instances indicating presence/absence of positive instances. In this paper we introduce a novel MIL algorithm using Gaussian processes (GP). The bag labeling protocol of the MIL can be effectively modeled by the sigmoid likelihood through the max function over GP latent variables. As the non-continuous max function makes exact GP inference and learning infeasible, we propose two approximations: the soft-max approximation and the introduction of witness indicator variables. Compared to the state-of-the-art MIL approaches, especially those based on the Support Vector Machine, our model enjoys two most crucial benefits: (i) the kernel parameters can be learned in a principled manner, thus avoiding grid search and being able to exploit a variety of kernel families with complex forms, and (ii) the efficient gradient search for kernel parameter learning effectively leads to feature selection to extract most relevant features while discarding noise. We demonstrate that our approaches attain superior or comparable performance to existing methods on several real-world MIL datasets including large-scale content-based image retrieval problems.  相似文献   

11.
Greedy approaches suffer from a restricted search space which could lead to suboptimal classifiers in terms of performance and classifier size. This study discusses exhaustive search as an alternative to greedy search for learning short and accurate decision rules. The Exhaustive Procedure for LOgic-Rule Extraction (EXPLORE) algorithm is presented, to induce decision rules in disjunctive normal form (DNF) in a systematic and efficient manner. We propose a method based on subsumption to reduce the number of values considered for instantiation in the literals, by taking into account the relational operator without loss of performance. Furthermore, we describe a branch-and-bound approach that makes optimal use of user-defined performance constraints. To improve the generalizability we use a validation set to determine the optimal length of the DNF rule. The performance and size of the DNF rules induced by EXPLORE are compared to those of eight well-known rule learners. Our results show that an exhaustive approach to rule learning in DNF results in significantly smaller classifiers than those of the other rule learners, while securing comparable or even better performance. Clearly, exhaustive search is computer-intensive and may not always be feasible. Nevertheless, based on this study, we believe that exhaustive search should be considered an alternative for greedy search in many problems.  相似文献   

12.
杨明奇  李占山  张家晨 《软件学报》2019,30(11):3355-3363
表约束是一种外延的知识表示方法,每个约束在对应的变量集上列举出所有支持或禁止的元组.广义弧相容(generalized arc consistency,简称GAC)是求解约束满足问题应用最广泛的相容性.Simple Tabular Reduction(STR)是一类高效的维持GAC的算法.在回溯搜索中,STR动态地删除无效元组,降低了查找支持的开销,并拥有单位时间的回溯代价,在高元表约束上获得了广泛运用,并有大量基于STR的改进算法被提出,其中,元组集的压缩表示是目前研究较多的方法.同样基于动态维持元组集有效部分的思想,为STR提出一种检测并删除无效元组和为变量更新支持的算法,作用于原始表约束并拥有单位时间的回溯代价.实验结果表明,该算法在表约束上维持GAC的效率普遍高于现有的非基于压缩表示的STR算法,并且在一些实例上的效率高于最新的基于元组集压缩表示的STR算法.  相似文献   

13.
李哲  于哲舟  李占山 《软件学报》2023,34(9):4153-4166
约束规划(constraint programming, CP)是表示和求解组合问题的经典范式之一.扩展约束(extensional constraint)或称表约束(table constraint)是约束规划中最为常见的约束类型.绝大多数约束规划问题都可以用表约束表达.在问题求解时,相容性算法用于缩减搜索空间.目前,最为高效的表约束相容性算法是简单表约缩减(simple table reduction, STR)算法簇,如Compact-Table (CT)和STRbit算法.它们在搜索过程中维持广义弧相容(generalized arc consistency, GAC).此外,完全成对相容性(full pairwise consistency, fPWC)是一种比GAC剪枝能力更强的相容性.最为高效的维持fPWC算法是PW-CT算法.多年来,人们提出了多种表约束相容性算法来提高剪枝能力和执行效率.因子分解编码(factor-decomposition encoding, FDE)通过对平凡问题重新编码.它一定程度地扩大了问题模型,使在新的问题上维持相对较弱的GAC等价于在原问题...  相似文献   

14.
Engineering design problems are often multi-objective in nature, which means trade-offs are required between conflicting objectives. In this study, we examine the multi-objective algorithms for the optimal design of reinforced concrete structures. We begin with a review of multi-objective optimization approaches in general and then present a more focused review on multi-objective optimization of reinforced concrete structures. We note that the existing literature uses metaheuristic algorithms as the most common approaches to solve the multi-objective optimization problems. Other efficient approaches, such as derivative-free optimization and gradient-based methods, are often ignored in structural engineering discipline. This paper presents a multi-objective model for the optimal design of reinforced concrete beams where the optimal solution is interested in trade-off between cost and deflection. We then examine the efficiency of six established multi-objective optimization algorithms, including one method based on purely random point selection, on the design problem. Ranking and consistency of the result reveals a derivative-free optimization algorithm as the most efficient one.  相似文献   

15.
Boosting learning and inference in Markov logic through metaheuristics   总被引:1,自引:1,他引:0  
Markov Logic (ML) combines Markov networks (MNs) and first-order logic by attaching weights to first-order formulas and using these as templates for features of MNs. State-of-the-art structure learning algorithms in ML maximize the likelihood of a database by performing a greedy search in the space of structures. This can lead to suboptimal results because of the incapability of these approaches to escape local optima. Moreover, due to the combinatorially explosive space of potential candidates these methods are computationally prohibitive. We propose a novel algorithm for structure learning in ML, based on the Iterated Local Search (ILS) metaheuristic that explores the space of structures through a biased sampling of the set of local optima. We show through real-world experiments that the algorithm improves accuracy and learning time over the state-of-the-art algorithms. On the other side MAP and conditional inference for ML are hard computational tasks. This paper presents two algorithms for these tasks based on the Iterated Robust Tabu Search (IRoTS) metaheuristic. The first algorithm performs MAP inference and we show through extensive experiments that it improves over the state-of-the-art algorithm in terms of solution quality and inference time. The second algorithm combines IRoTS steps with simulated annealing steps for conditional inference and we show through experiments that it is faster than the current state-of-the-art algorithm maintaining the same inference quality.  相似文献   

16.
Mackworth and Freuder have analyzed the time complexity of several constraint satisfaction algorithms.(1) Mohr and Henderson have given new algorithms, AC-4 and PC-3, for arc and path consistency, respectively, and have shown that the arc consistency algorithm is optimal in time complexity and of the same order space complexity as the earlier algorithms.(2) In this paper, we give parallel algorithms for solving node and arc consistency. We show that any parallel algorithm for enforcing are consistency in the worst case must have O(na) sequential steps, wheren is number of nodes, anda is the number of labels per node. We give several parallel algorithms to do arc consistency. It is also shown that they all have optimal time complexity. The results of running the parallel algorithms on a BBN Butterfly multiprocessor are also presented.This work was partially supported by NSF Grants MCS-8221750, DCR-8506393, and DMC-8502115.  相似文献   

17.
最小赋权支配集是一个NP困难的组合优化问题,有着广泛的应用背景。提出了一个高效的求解最小赋权支配集的迭代禁忌搜索算法。该算法采用随机贪心构造算法构造初始解,并利用快速的局部禁忌搜索算法寻找局部最优解,通过随机扰动和修复策略来搜索新的区域,以期跳出当前的局部最优解。用顶点数为800到1 000的大规模标准测试例子测试提出的算法。数值实验结果和与现存的启发式算法比较结果表明了算法是有效的。  相似文献   

18.
Bandit problems and the exploration/exploitation tradeoff   总被引:1,自引:0,他引:1  
We explore the two-armed bandit with Gaussian payoffs as a theoretical model for optimization. The problem is formulated from a Bayesian perspective, and the optimal strategy for both one and two pulls is provided. We present regions of parameter space where a greedy strategy is provably optimal. We also compare the greedy and optimal strategies to one based on a genetic algorithm. In doing so, we correct a previous error in the literature concerning the Gaussian bandit problem and the supposed optimality of genetic algorithms for this problem. Finally, we provide an analytically simple bandit model that is more directly applicable to optimization theory than the traditional bandit problem and determine a near-optimal strategy for that model  相似文献   

19.
The problem addressed in this paper is the allocation of multiple advertisements on a Web banner, in order to maximize the revenue of the allocated advertisements. It is essentially a two-dimensional, single, orthogonal, knapsack problem, applied to pixel advertisement. As this problem is known to be NP-hard, and due to the temporal constraints that Web applications need to fulfill, we propose several heuristic algorithms for generating allocation patterns. The heuristic algorithms presented in this paper are the left justified algorithm, the orthogonal algorithm, the GRASP constructive algorithm, and the greedy stripping algorithm. We set out an experimental design using standard banner sizes, and primary and secondary sorting criteria for the set of advertisements. We run two simulations, the first simulation compares the heuristics with an optimal solution found using brute force search, and the second simulation compares the heuristic algorithms to gain a better insight into their performance. Finding a suitable pattern generating algorithm is a trade-off between effectiveness and efficiency. Results indicate that allocating advertisements with the orthogonal algorithm is the most effective. In contrast, allocating advertisements using the greedy stripping algorithm is the most efficient. Furthermore, the best settings per algorithm for each banner size are given.  相似文献   

20.
In this paper, we present WebPut, a prototype system that adopts a novel web-based approach to the data imputation problem. Towards this, Webput utilizes the available information in an incomplete database in conjunction with the data consistency principle. Moreover, WebPut extends effective Information Extraction (IE) methods for the purpose of formulating web search queries that are capable of effectively retrieving missing values with high accuracy. WebPut employs a confidence-based scheme that efficiently leverages our suite of data imputation queries to automatically select the most effective imputation query for each missing value. A greedy iterative algorithm is proposed to schedule the imputation order of the different missing values in a database, and in turn the issuing of their corresponding imputation queries, for improving the accuracy and efficiency of WebPut. Moreover, several optimization techniques are also proposed to reduce the cost of estimating the confidence of imputation queries at both the tuple-level and the database-level. Experiments based on several real-world data collections demonstrate not only the effectiveness of WebPut compared to existing approaches, but also the efficiency of our proposed algorithms and optimization techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号