首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
在低温条件下,润滑油黏度变大,流动性变差,添加剂活性降低,对润滑性能产生显著影响。为研究PAO润滑油的低温摩擦润滑性能,以不同黏度级别PAO基础油为研究对象,采用流变仪MCR302、SRV摩擦磨损试验机,研究PAO润滑油样及添加极压抗磨添加剂的油样在低温条件下的流变性能和磨损润滑性能。试验结果表明:在低温环境下,随着温度降低,PAO油样的黏度急剧增大,黏度越大的油样其受低温条件影响越明显;PAO油样在低温环境下,表现出明显的剪切稀化现象;低温环境使得极压抗磨剂添加剂的活性变低,添加剂并未表现出减摩抗磨作用。因此,低温试验条件对PAO基础油和添加剂的摩擦学性能产生显著影响,阻碍了基础油和润滑油添加剂减摩抗磨作用的发挥。  相似文献   

2.
采用柴油发动机外特性、负荷特性、稳定性台架试验,研究SAE15W-40、SAEOW-30和SAE5W-30三种黏度等级的发动机油对柴油发动机动力性、经济性和稳定性的影响,考察不同黏度等级之间润滑油相互代用的可行性.结果表明:使用SAE15W-40级润滑油时,发动机具有较高的功率和扭矩,但油耗率高于使用SAEOW-30和5W-30级润滑油时;使用SAE15W-40润滑油时发动机具有最好的加速性能,使用SAEOW-30润滑油时次之,而使用SAESW-30润滑油时发动机的加速比较缓和;使用三种黏度等级润滑油时发动机工作条件稳定,表明在战时或紧急情况下,不同黏度等级的润滑油之间进行互相代用是可行的.  相似文献   

3.
研究GCr15/45#钢摩擦副在4种不同黏度的润滑油润滑时,有和无超声振动下的摩擦磨损性能,采用扫描电子显微镜分析磨痕表面形貌,探讨在不同黏度润滑油作用下,超声振动对润滑油摩擦学性能的影响机制。结果表明:超声振动对不同黏度润滑油摩擦学性能的影响是不同的;超声振动可以提高低黏度润滑油润滑的减摩抗磨性能,如在6#白油润滑时施加超声振动后,摩擦副间的摩擦因数和磨损体积分别减小了13.6%和17.5%;高黏度润滑油润滑时,超声振动会加剧摩擦副的摩擦磨损,如在150BS润滑时施加超声振动后,摩擦副间的摩擦因数和磨损体积分别增加了10.4%和50%。  相似文献   

4.
为研究高温下金属部件中的铁对航空润滑油高温氧化的影响,用高温氧化釜分别模拟50-1-4Ф航空润滑油在含铁片和不含铁片情况下的高温氧化过程,观察油样的颜色、黏度、酸值的变化,用压力差示扫描量热法测量其氧化诱导期。结果表明,高温氧化对50-1-4Ф航空润滑油高温黏度影响较小,对低温黏度、酸值和氧化诱导期影响明显;铁对该航空润滑油的酸值和氧化诱导期影响较大,含铁的油样酸值和氧化诱导期的变化幅度是不含铁油样的数倍;铁在较高的氧化温度下(250、300℃)对黏度影响明显,但在较低的氧化温度下(180、200℃)对黏度影响小。  相似文献   

5.
活塞裙部-缸套间的润滑油输送情况对内燃机活塞组件摩擦副润滑状态、润滑油消耗、排放和润滑油性能退化等都有重要的影响。结合活塞二阶运动模型、流体润滑模型和润滑油流动模型等,进行不同内燃机工况下活塞裙部-缸套间润滑油输送状况的计算,主要分析活塞向下运动行程中活塞裙部运动后气缸套表面润滑油的滞留量。结果表明,在不同工况下对应行程中润滑油滞留量的变化规律基本相同,不同时刻的润滑油滞留量不相同,活塞上下止点处的润滑油滞留量基本相同。内燃机负荷相同时,随转速增加,进气行程中和膨胀行程中后期的润滑油滞留量减少,膨胀行程前期的润滑油滞留量增加。内燃机转速相同时,膨胀行程前期的润滑油滞留量一般随负荷增加而增加,膨胀行程中后期的润滑油滞留量基本不随负荷变化,不同转速下进气行程中润滑油滞留量随负荷的变化规律不一致。  相似文献   

6.
利用高温和低温运动黏度测定仪分别对特3、特4和4122这3种高低温仪表轴承润滑油进行了高、低温环境下的黏度测量,绘制了黏温曲线图,对比分析了几种润滑油的黏温特性.基于试验数据,确定了润滑油的黏温模型.结果表明:特3和特4油的黏温性能优于4122油,Vogel模型计算精度高于Walther模型.  相似文献   

7.
为改善滚滑轴承的润滑,运用两相流理论对其滑块进行油气润滑设计,建立滑块的油-气两相流CFD模型,分析不同入口角度、进气速度、进油速度和润滑油黏度对流场油相分布的影响。结果表明:油-气混合润滑方式能在内外滚道接触区形成有效的润滑油膜;油气管道夹角影响油滴分布,角度过大时大量油滴会在滑块侧面上附着,角度过小时油滴会在外滚道入口处堆积,造成供油连续性不好,油膜稳定性下降;进气速度过大会降低油滴附着率,无法形成有效油膜,而进油速度过大会造成润滑油累积,出现搅油现象,因此选择合适的进气和进油速度,才能控制油滴的大小和保持润滑过程的连续性;润滑油黏度会影响油滴在滑块上的附着效果,合理地选择润滑油黏度,才能保证流场油相分布均匀。  相似文献   

8.
内燃机油环-缸套摩擦副润滑分析,多采用富油条件或假定某种特殊边界条件,与油环-缸套摩擦副实际润滑油供给状况不相符。以某四行程内燃机为研究对象,研究油环-缸套间润滑油流动与供给,确定油环进口油膜厚度;在此基础上,根据流量平衡和压力平衡,确定油环上、下轨各段工作面边界条件,并分别对各段求解Reynolds方程,分析油环-缸套摩擦副在计及润滑油供给条件下的润滑性能,并与富油状况对比。研究结果表明,计及供油状况下,油环-缸套摩擦副在上、下行程的润滑性能不对称,最小油膜厚度、最大油膜压力、摩擦力及摩擦功耗与富油状况均有一定差异,特别是在上行程差别显著。可见,考虑进口润滑油供给条件分析内燃机油环润滑性能,将对活塞环-缸套摩擦副的设计信赖性产生积极影响。  相似文献   

9.
利用气相色谱,通过外标法定量分析某飞机发动机在用润滑油中低温抗氧剂和高温抗氧剂的衰变规律;利用加速氧化试验,探讨高温抗氧剂的热氧化动力学。结果表明:该航空润滑油在使用中,高温抗氧剂基本能维持在一定水平,其热氧化衰变过程近似为一级反应;补油可明显延缓润滑油高温抗氧剂的衰减速率,且补加油情况对抗氧化性能有一定影响;低温抗氧剂在使用中衰减比高温抗氧剂要快得多;通过检测润滑油的黏度和总酸值变化,可以监控航空润滑油的氧化衰变,从而有效保障飞机发动机的润滑油使用安全。  相似文献   

10.
一、粘度适宜粘温性能好 润滑油的粘度对内燃机的启动性能、磨损程度、功率损失的大小及燃料和润滑油的消耗量等都有直接影响.因此,在使用内燃机润滑油时,必须选择适当的粘度才能收到良好的效果.另外,还得对它的粘温性能提出较高的要求,因内燃机不可避免地要在温度变化较大的情况下工作,在启动前后,温差很大,油的粘度随着温度的高低而变大变小,起不到好的润滑作用.为了适应内燃机启动前后温度的变化,所以要求润滑油粘温性能的指标有粘度比和粘度指数.选用时以粘度比较小或粘度指数较大的油为佳.  相似文献   

11.
开发一种基于振动法的在线监测润滑油黏度传感器,在恒温和变温状态下,通过实验室和柴油机台架实验测试传感器对润滑油黏度的响应,温度对传感器的影响及传感器的稳定性。结果表明,该传感器对润滑油黏度变化具有较高的响应和灵敏度,能准确测量润滑油黏度,且稳定可靠。  相似文献   

12.
Friction and wear characteristics of low viscosity SAE 5W-20 engine oils containing different amounts of phosphorus were studied using two different test devices. One was a laboratory high frequency reciprocating rig (HFRR) testing new and used oils at low and elevated temperatures. A direct acting mechanical bucket (DAMB) sliding valvetrain bench test apparatus was used to measure the friction and wear performances of fresh engine oils containing 0, 0.05 and 0.1 wt% phosphorus for a cam lobe rubbing against a tappet insert. The tester was coupled with a radioactive tracer machine (RTM). The results show that in the region of low phosphorus concentration, friction is inversely correlated to temperature. The friction coefficient slightly drops with increasing temperature and increases with increased phosphorus concentration at elevated temperatures. Significant wear is produced at phosphorus concentrations lower than 0.02 wt% at most temperatures. Friction and wear are reduced with the addition of supplemental antiwear additives. MoDTC reduces wear more effectively than ZnDTC in the presence of ZDDP.  相似文献   

13.
In large, slow, cross‐head marine diesel engines research has increasingly shown that the lubrication regime between piston rings and cylinder liner at top dead centre is of the boundary lubrication type due to the high gas pressure, low sliding speed, and high temperature. This means that the tribological properties of piston ring, cylinder liner, and cylinder lubricant in these types of engine under boundary lubrication conditions should be considered simultaneously when friction and wear between the piston ring and cylinder liner are studied. Until now there has been no standard method to evaluate boundary lubrication performance. There are a few traditional methods used in lubricant research, but their results are not correlated with service conditions. It is important to find a suitable method to evaluate the boundary lubrication performance of lubricants at the laboratory testing stage or before the engine testing stage. The important parameters, such as sliding speed, normal load, materials of the contacting pairs, and lubricant, need all to be controlled. In this paper a systematic experimental procedure, the ‘five times heating and cooling test’, is introduced to assess lubricant properties under boundary lubrication conditions. Most of the parameters mentioned above are controlled. The model contact, of pin‐on‐plate form, is made from the actual piston and liner materials used in a large‐bore, slow, cross‐head marine diesel engine. The temperature characteristics of different blends of lubricants are investigated under boundary lubrication conditions using a pin‐on‐plate reciprocating test rig. These blends of lubricants have the same additives but different base fluids; they nevertheless fulfil the physical and chemical requirements of a real marine diesel engine. The test temperature range is from room temperature to the working temperature of the top piston ring. The experiments show that there are different temperature—friction characteristics for lubricants with different bases and the same additive package and there are also different temperature—friction characteristics during heating up and cooling down for each blend. Single‐base lubricants have more promising temperature—friction characteristics than those of a blend of a high‐viscosity base and a low‐viscosity base at high temperature.  相似文献   

14.
This paper investigates the effect of lubricant composition on engine friction and connecting-rod bearing wear. Special attention has been given to polymer-thickened (VI improved) oils since these oils are characterized by shear-dependent viscosity and a simultaneous occurrence of viscous and elastic properties. The variables investigated in this study included lubricant viscosity, polymer type, and concentration.

Two sets of engine studies were conducted, one to determine engine friction, the other to measure connecting-rod bearing wear, using irradiated bearings. For Newtonian fluids, the engine friction and wear response can be predicted from classical lubrication theory—that is, (a) friction decreases with increaing viscosity until a viscosity is reached where friction is a minimum; beyond this viscosity, further increases in viscosity result in increased friction. (b) Bearing wear decreases with increasing viscosity, but as a step function, not linearly, and the transition viscosity (of the step) corresponds to the viscosity which gives a minimum engine friction.

The addition of polymeric VI improvers (non-Newtonian fluids) to mineral oil base stocks reduces engine friction and lowers bearing wear—the amount of friction and wear reduction depending on the polymer type and concentration. This paper demonstrates that polymer-thickened oils actually give better bearing wear performance than their comparable mineral oil counterparts despite the fact that they have a lower apparent viscosity at high rates of shear. In addition, it appears that temporary viscosity loss is not the sale cause of the reduced engine friction of polymer-thickened oils.  相似文献   

15.
The friction behaviour of five different gear oils in rolling–sliding and pure sliding contacts and how temperature influences their friction properties were investigated. It is found that increasing temperature decreases boundary friction with gear oils that contain friction modifiers while not for other gear oils, at all contact pressures investigated. In mixed lubrication region, temperature decreases friction at low contact pressures while increases friction at high contact pressures. The effect of slide–roll ratio on friction is significant in boundary lubrication region especially at higher temperature while less significant in mixed lubrication region at both low and high temperatures. The ranking of gear oils for friction in boundary and mixed lubrication regimes is similar both in rolling–sliding and pure sliding contacts, regardless of temperature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
总结了我国汽车产业环保法规的演变历程和近年来汽车产业的发展状况,分析了汽油发动机技术的应用和柴油发动机技术的改进对润滑油的要求.汽油发动机技术的应用,要求润滑油具有更好的抗磨、抗高温、抗氧化性能及清净性能,较低的粘度和硫、磷、硫酸盐灰分含量.柴油发动机技术的改进,要求润滑油具有高的热稳定性和抗氧化、抗磨性能以及烟炱分散性能,较低的硫、磷和灰分含量.  相似文献   

17.
为考察甲醇汽油对发动机油低温性能的影响,通过向发动机油中添加甲醇汽油及其模拟燃烧产物甲酸、甲醛,分析其对油样的倾点、凝点、低温动力黏度的影响。结果表明:甲醇汽油及其模拟燃烧产物甲醛、甲酸对油样的倾点、凝点影响较小;随着甲醇添加量的增加,油样的低温动力黏度有增大的趋势;在甲酸质量分数为0.8%~1.2%时,油样的低温动力黏度值较大,但其增大的趋势平缓。因此甲醇汽油及其模拟燃烧产物对发动机油的低温性能影响不大。  相似文献   

18.
W.J. Bartz  W. Wiemann 《Wear》1979,56(1):19-35
The pumpability of various engine oils at low temperatures has been investigated using a Haake-Rotovisko RV2 viscometer, a test engine and a laboratory pumping rig. The cold flow and cold pumpability properties of polymer-thickened engine oils can be predicted from the flow curves at low temperatures. Correlation was found between viscosity data and the cold pumpabiiity behaviour of an oil in an engine. The best evaluation of the low temperature pumpability of multigrade oils in the engine used was given by a specially developed laboratory pumpability rig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号