共查询到19条相似文献,搜索用时 68 毫秒
1.
2.
《计算机应用与软件》2014,(2)
Web用户聚类是通过分析用户会话,将具有相同或相似访问特征的用户聚为一类。在会话相似性度量方面综合考虑了网页浏览时间和访问频次两个因素,并考虑到用户个人习惯、能力等因素对浏览时间的影响,将浏览时间处理为RDP(Reduce the Differences in Personality)浏览时间,以降低其个性特征。为此,提出一种基于用户特性的RDPk-means聚类算法。实验表明,该算法可以有效实现用户会话的聚类,聚类结果客观合理。 相似文献
3.
服务于定向信息推荐的模糊聚类协同推荐算法 总被引:1,自引:0,他引:1
面对金融领域信息量扣用户数量的不断增加,现有的金融信息推荐算法不能很好地满足金融用户的信息需求,推荐结果的及时性和准确性有待进一步提高。在分析现有协同推荐算法的基础上,本文提出了金融信息模糊聚类协同推荐算法,将模糊聚类和协同推荐算法相结合,以用户一项目评价矩阵为研究基础,对有相似信息需求兴趣的用户进行模糊聚类,用户组群的兴趣爱好代表并预测个人的兴趣爱好,能为用户提供和发现新的信息资源,很好地满足金融用户信息需求的多兴趣性和时效性。最后对提出的算法进行实验,实验结果表明了算法具有良好的推荐效果。 相似文献
4.
为了给网站提供个性化推荐服务,提出了基于Web日志用户访问事务的聚类算法CAKPS.该算法采用竞争凝聚思想,自动确定最佳聚类数和初始聚类中心.实验结果表明CAKPS聚类算法可以取得较好的收敛性,同时用户聚类集之间的差异性也更高. 相似文献
5.
基于页面聚类的推荐算法常被应用在个性化推荐系统中,但是很少考虑页面访问的顺序性.针对这种弊端,提出了一种新的路径相似度系数,同时在推荐算法中运用了关联规则,提高了推荐结果的准确性. 相似文献
6.
《计算机应用与软件》2015,(10)
由于社交网络中人物与内容之间错综复杂的关系,如何合理地给用户推荐感兴趣的内容具有十分重要的意义。提出CCVR(Core user for Clustering interesting Vector for Recommend)算法。基于用户的兴趣矩阵,运用改进的K-means算法进行聚类从而推导类兴趣向量,由此预测用户对哪些内容标签感兴趣,从而形成推荐。实验结果证明CCVR算法具有良好的准确性。 相似文献
7.
基于用户聚类的播客节目推荐 总被引:1,自引:0,他引:1
许多播客推荐机制一般根据整体点击次数来向用户推荐节目,但是一些点击次数很高的节目未必就是某类用户所喜欢的,因而推荐的节目对用户的喜好针对性不是很强.为了提高推荐节目对用户喜好特点的针对性,提出基于用户聚类的节目推荐.对用户在播客平台上的采集数据进行聚类分析后,把用户归为某一类型,并把该类型的所有节目根据点击次数多少存放入相应的推荐表.在用户下次登录时,根据其所属用户类型从推荐表中选出其最可能观看的尚未浏览的节目.试验结果证明,该播客推荐系统能很好地根据用户的喜好特点来进行针对性节目推荐. 相似文献
8.
为了适应用户不断增长的信息需求,有效地解决信息过载和信息迷失给人们带来的种种问题,本文提出了一种基于用户事务模式的智能推荐算法,该算法比较适合新用户、访问站点较少的用户和有新颖性信息需求的用户,推荐范围相对基于关联规则的要广。 相似文献
9.
基于用户聚类的异构社交网络推荐算法 总被引:11,自引:0,他引:11
相比传统的社交网络,基于弱关系的微博类社交网络具有显著的异构特征.根据特征可以将节点分为用户(消息订阅者)和主题(消息发布者)两类,面向用户推荐其感兴趣的主题成为了该类社交网络中推荐系统的主要目标之一,同时该类社交网络中普遍存在的数据稀疏性和冷启动现象成为了推荐系统面临的主要问题.文中提出一种基于两阶段聚类的推荐算法GCCR,将图摘要方法和基于内容相似度的算法结合,实现基于用户兴趣的主题推荐.与以往方法相比,该方法在稀疏数据和冷启动的情况下具有更好的推荐效果,此外,通过对数据集进行大量的离线处理,使得其较以往推荐方法具有更好的在线推荐效率.最后通过真实社交网络的数据对本方法进行了验证,同时分析了各参数对推荐效果的影响. 相似文献
10.
基于项目属性的用户聚类协同过滤推荐算法 总被引:1,自引:0,他引:1
协同过滤推荐算法是个性化推荐服务系统的关键技术,由于项目空间上用户评分数据的极端稀疏性,传统推荐系统中的用户相似度量算法开销较大并且无法保证项目推荐精度.通过对共同感兴趣的项目属性的相似用户进行聚类,构建了不同项目评价的用户相似性,设计了一种优化的协同过滤推荐算法.实验结果表明,该算法能够有效避免由于数据稀疏性带来的弊端,提高了系统的推荐质量. 相似文献
11.
互联网技术的发展日新月异,Web数据是海量的,同时网络用户的浏览兴趣也是不断变换的。为了满足用户兴趣不断变换的需求,更好地实现个性化推荐,提出了一种新的Web用户会话实时聚类算法。算法分析验证了该算法可以提高聚类速度,能更好地满足用户的需求。 相似文献
12.
协同过滤是一种应用广泛的推荐算法,但存在着效率低和数据稀疏等问题。为解决这些问题,提出了一种改进的聚类推荐算法。该算法引用云模型,先从项目属性和用户属性两方面计算云模型期望、熵和超熵,并考虑到评分时间、评分高低和评分习惯等因素的影响,建立用户兴趣模型;接着,采用基于云模型的修正相似度量方法进行用户兴趣相似度比较,并使用K-means算法进行聚类;最后,利用参与预测人数的比例对公共项目进行推荐结果合并。在MovieLens上的实验结果表明,该算法不仅可以解决效率低和数据稀疏等问题,还提高了推荐的准确性。 相似文献
13.
针对传统的协同过滤算法忽略了用户兴趣源于关键词以及数据稀疏的问题,提出了结合用户兴趣度聚类的协同过滤推荐算法。利用用户对项目的评分,并从项目属性中提取关键词,提出了一种新的RF-IIF (rating frequency-inverse item frequency)算法,根据目标用户对某关键词的评分频率和该关键词被所有用户的评分频率,得到用户对关键词的偏好,形成用户—关键词偏好矩阵,并在该矩阵基础上进行聚类。然后利用logistic函数得到用户对项目的兴趣度,明确用户爱好,在类簇中寻找目标用户的相似用户,提取邻居爱好的前◢N◣个物品对用户进行推荐。实验结果表明,算法准确率始终优于传统算法,对用户爱好判断较为准确,缓解了数据稀疏问题,有效提高了推荐的准确率和效率。 相似文献
14.
针对协同过滤存在的数据稀疏性问题,提出了融合多源信息聚类和IRC-RBM的混合推荐算法。首先以用户信任度和项目时间权重作为聚类依据,利用最小生成树的K-means聚类算法对用户进行聚类分析,生成K个相似用户集合,在聚类分析的基础上进行评分预测;最后通过线性加权的方式,把聚类后评分矩阵和IRC-RBM模型生成的评分矩阵进行加权融合,用Top-N进行推荐。实验结果表明,相比较传统的推荐算法,该混合算法在准确率上有了显著的提升。 相似文献
15.
目前推荐系统存在评论数据稀疏、冷启动和用户体验度低等问题,为了提高推荐系统的性能和进一步改善用户体验,提出基于聚类层次模型的视频推荐算法。首先,从相关用户方面着手,通过近邻传播(AP)聚类分析得到相似用户,从而收集相似用户中的历史网络视频数据,进而形成视频推荐集合;其次,利用用户行为的历史数据计算出用户对视频的喜好值,再把视频的喜好值转换成视频的标签权重;最后,通过层次分析模型算出视频推荐集合中用户喜好视频的排序,产生推荐列表。基于MovieLens Latest Dataset和YouTube视频评论文本数据集,实验结果表明所提算法在均方根误差和决策精度方面均表现出良好的性能。 相似文献
16.
针对目前协同过滤推荐算法的推荐质量和推荐效率低的问题,提出了一种基于改进蜂群K-means聚类模型的协同过滤推荐算法。首先,根据用户属性信息,采用改进蜂群K-means算法对用户进行聚类,建立用户聚类模型;然后,计算目标用户与用户聚类模型中各聚类中心的距离,其中距离最近的类为目标用户的检索空间;最后,从检索空间中依据用户-项目评分矩阵通过相似度计算搜索目标用户的最近邻居,由最近邻居的信息产生推荐列表。实验结果表明,该算法降低了平均绝对误差值,缩短了运行时间,提高了推荐质量和推荐效率。 相似文献
17.
传统的个性化推荐算法普遍存在数据稀疏性问题,影响了推荐的准确度。Slope one算法具有简单、高效等特点,但该算法只是根据用户—项目评分矩阵进行数据分析,对所有用户采用一致性的权重进行计算,忽视了用户对项目类型的喜好程度。针对上述问题进行了研究,提出LR-Slope one算法。首先根据用户—项目评分矩阵和项目类型信息构建用户对项目类型的偏好矩阵;然后利用线性回归模型计算用户对每个类型的权重,采用随机梯度下降算法优化权重;最后结合Slope one算法预测评分,填充评分矩阵,提高推荐的质量。实验结果表明,所提算法提高了推荐的精度,有效缓解了稀疏性问题。 相似文献
18.
针对推荐算法中用户评分矩阵维度高、计算量大的问题,为更加真实地反映用户本身评分偏好,提出一种结合用户聚类和评分偏好的推荐算法。先利用PCA降维和k-means聚类对用户评分矩阵进行预处理,在最近邻选取方法上,添加用户共同评分数量作为约束,利用用户和相似簇的相似度对相似簇内评分加权求和生成基本预测评分;再综合用户评分偏置和用户项目类型偏好,建立用户评分偏好模型;最后通过多元线性回归确定每部分的权重,生成最终的预测评分。对比实验结果表明,新算法能更真实地反映用户评分,有效减少计算量并提高推荐系统的预测准确率,更好地满足用户对于推荐系统的个性化需求。 相似文献
19.
目前多数社交网络主要根据已有好友关系推荐潜在好友,用户的兴趣爱好不作为主要考虑因素;此外,如何从大量数据中精确地提取用户的兴趣爱好是一项十分艰巨的任务。为此,提出一种在大量标注行为数据中精确挖掘出用户的兴趣爱好,并据此推荐具有相同兴趣爱好的潜在好友的算法--基于标注的好友推荐(FRBT)算法。首先使用词频-逆向文件频率(TF-IDF)对标签进行聚类,将语义相似的标签聚成话题;然后在话题的基础上提出一种新的相似度公式来计算用户相似度;再融合基于话题与基于物品的用户相似度,将相似度较高的用户作为潜在好友进行推荐。在Delicious数据集上以准确率和召回率为指标与item、tag和tri-graph三种算法进行比较,实验验证了该算法能够更准确地为用户推荐兴趣相似的好友。 相似文献