首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study is reported of the controlled thermal decomposition of hydrated dolomitic lime originated from a high-grade dolomite. Both increasing and constant temperature weight-loss methods have been employed to measure the rate of thermal dehydration of hydrated dolomitic lime at 305-400°C. The amassed data have been correlated with the use of an Arrhenius-type rate equation. Changes in the specific surface area of calcines due to sintering phenomena have also been studied at 400-600°C. An empirical, fractional-order kinetic relationship has been developed for surface area reduction as a function of temperature and elapsed time of sintering. Presented findings make it possible to specify the operation conditions needed for the preparation of reactive dolomite-derived sorbents.  相似文献   

2.
A new experimental method is described for non-isothermal thermogravimetry (TG) involving combustion of mixtures of sieved coal with sieved calcium-containing sorbents. This rapid TG method utilizes a baseline for TG combustion of coal alone, derives an equation that gives a semi-quantitative measure (±10% repeatability) of the coal's reactive sulphur retained by the sorbent, the extent of retention of S02 generated in situ during combustion varying with different sorbents. The method permits direct variation in separate experiments of the calcium-to-sulphur ratio during combustion and relative ranking of different sorbents by retention of reactive sulphur in combustion. Relative rankings are presented for three pre-calcined natural stones (two limestones and one dolomite); these results correlate with relative rankings from another TG method reported in the literature. It is suggested that this new method is useful for pre-screening the effectiveness of S02 sorbents considered for use in fluidizedbed combustion of coal.  相似文献   

3.
Class F coal fly ash was slurried with hydrated lime at 90°C in 1/3, 5/3, 9/3, and 15/3 weight ratios and for 3, 5, 7, and 9 hours of hydration, in a process to prepare sorbents for SO2 removal. The amounts of aluminum, silicon, and calcium in the product of the pozzolanic reaction were determined in order to study the evolution of product composition with the initial raw materials ratio and hydration time and to relate this composition to the desulfurization capability of the material. Al, Si, and Ca were present in the solid product for any raw materials ratio and hydration time, showing that calcium silicates, calcium aluminates, and/or calcium aluminum silicates were obtained simultaneously. The products formed show a nearly constant molar ratio of Al2O3/SiO2 independent of the experimental conditions tested and similar to the Al2O3/SiO2 ratio in the fly ash. The SiO2/CaO molar ratio in the products decreased as the initial fly ash/Ca(OH)2 ratio decreased, being approximately constant for each ratio with respect to hydration time after 5 hours of hydration. The maximum moles of CaO, SiO2, and Al2O3 per gram of sorbent in the reaction product were found for any hydration time for the 5/3 sorbents, meaning that at this initial ratio the pozzolanic reaction takes place at the highest rate. The capacity of the sorbent for SO2 removal depends not only on the amount of products produced by the pozzolanic reaction but also on the specific surface area of the sorbent.  相似文献   

4.
孙锋  申成  罗聪  罗童 《洁净煤技术》2021,(2):180-186
钙基吸附剂进行多次CO2捕集后,碳酸化效率会大幅衰减,此时的吸附剂能否高效脱硫利用是值得重点关注的问题。鉴于此,筛选了高性能合成钙基吸附剂和天然石灰石吸附剂,通过热重分析仪分析对比其在多循环CO2捕集后的碳酸化和硫酸化反应性能,采用微粒模型研究其硫酸化反应动力学特征。结果发现,高性能合成钙基吸附剂的碳酸化反应速率和CO2吸附能力明显高于石灰石吸附剂。在长达500循环的CO2捕集试验后,高性能合成钙基吸附剂的CO2吸附能力比石灰石高10倍以上,其SO2吸附能力相较于石灰石提升约40%。经历多次CO2捕集反应循环后,2种吸附剂的硫酸化能力均有提升:其中,石灰石吸附剂的提升幅度更大,硫酸化转化率从26%提升到35%,而高性能合成钙基吸附剂的硫酸化转化率则从38%提升到43%。通过微粒模型计算发现,2种吸附剂的硫酸化反应均是与SO2浓度相关的一级反应,多循环捕集CO2反应后,石灰石吸附剂的硫酸化反应活化能下降接近30%,而高性能合成钙基吸附剂的硫酸化反应活化能只下降了5%。研究结果说明2种不同钙基吸附剂在进行循环CO2捕集后,脱硫能力得到了不同程度的提高,且均可以较好地应用于SO2的脱除。  相似文献   

5.
Chlorate- and perchlorate-sodalites were synthesized hydrothermally in the temperature range of 160°C to 500°C. IR absorption bands indicate the enclathration of NaClO3 (624 cm−1) and NaClO4 (624 cm−1 and 2050 cm−1) in the sodalite cages. The thermal decomposition has been characterized by simultaneous thermal analysis (TG, DTG, DTA) and high temperature X-ray powder diffraction. The total collapse of the sodalite framework structure and the formation of nepheline could be observed at 750°C and 1100°C for chlorate-sodalite and perchlorate-sodalite, respectively.

The crystal structure has been determined for NaClO4-sodalite showing cubic symmetry (a0=9.071 Å, SG P 3n) and complete ordering of Si and Al in the silicate framework; the Si-O-Al angle is 146.7°. The Cl atoms of the enclathrated perchlorate are located at the central positions of the sodalite cages. For the oxygen atoms of the Cl4 anions the structure refinement led to orientationally disordered sites having a close resemblance to the well-known O(2) positions of basic sodalite Na8[AlSiO4]6(OH)2·2 H2O.  相似文献   


6.
A BaTiO3 powder has been prepared by the sol-gel process from the hydrolysis of a solution of barium acetate and titanium ethylate in the presence of acetic acid as a catalyst. Supplementary constituents in the form of Ca(CH3COO)2, Zr(OC3H7)4, Sr(NO3)2 also can be used. Intermediate phases of barium acetate and barium carbonate have been identified by differential thermal analysis, X-ray diffraction, infra-red and scanning electron microscopy. BaTiO3 with perovskite structure synthesizes in the temperature range from 600 to 1000°C.  相似文献   

7.
Four kinds of Ca-based sorbents were prepared by calcination and hydration reactions using different precursors: calcium hydroxide, calcium carbonate, calcium acetate monohydrate and calcium oxide. The CO2 absorption capacity of those sorbents was investigated in a fixed-bed reactor in the temperature range of 350-650℃. It was found that all of those sorbents showed higher capacity for CO2 absorption when the operating temperature higher than 450℃. The CaAc2-CaO sorbent showed the highest CO2 absorption capacity of 299mg·g-1. The morphology of those sorbents was examined by scanning electron microscope (SEM), and the changes of composition before and after carbonation were also determined by X-ray diffraction (XRD). Results indicated that those sorbents have the similar chemical compositions and crystalline phases before carbonation reaction [mainly Ca(OH)2], and CaCO3 is the main component after carbonation reaction. The SEM morphology shows clearly that the sorbent pores were filled with reaction products after carbonation reaction, and became much denser than before. The N2 adsorption-desorption isotherms indicated that the CaAc2-CaO and CaCO3-CaO sorbents have higher specific surface area, larger pore volume and appropriate pore size distribution than that of CaO-CaO and Ca(OH)2-CaO.  相似文献   

8.
An environmentally friendly solid acid catalyst, Ce(SO4)2/TiO2 was prepared simply by modifying TiO2 with Ce(SO4)2 for acid catalysis of volatile organic chemicals, 2-propanol and cumene. The characterization of prepared catalysts was performed using FTIR, XRD and DSC. The surface area of 7-Ce(SO4)2/TiO2 calcined at 300 °C was very high (206.0 m2/g) compared to that of unmodified TiO2 (115.2 m2/g) due to the interaction between Ce(SO4)2 and TiO2. 7-Ce(SO4)2/TiO2 containing 7 wt% Ce(SO4)2 and calcined at 300 °C exhibited maximum catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation. The catalytic activities for both reactions were correlated with the acid amounts of catalysts measured by an ammonia chemisorption method. The role of Ce results in an increase in the thermal stability of the surface sulfate species and consequently the acid amount of Ce(SO4)2/TiO2 is increased. The asymmetric stretching frequency of the SO bonds for Ce(SO4)2/TiO2 catalysts was related to the acidic properties and to the catalytic activity for acid catalysis to remove volatile organic chemicals, 2-propanol and cumene.  相似文献   

9.
The effect of tungsten and barium on the thermal stability of V2O5/TiO2 catalyst for NO reduction by NH3 was examined over a fixed bed flow reactor system. The activity of V2O5/sulfated TiO2 catalyst gradually decreased with respect to the thermal aging time at 600 °C. The addition of tungsten to the catalyst surface significantly enhanced the thermal stability of V2O5 catalyst supported on sulfated TiO2. On the basis of Raman and XRD measurements, the tungsten on the catalyst surface was identified as suppressing the progressive transformation of monomeric vanadyl species into crystalline V2O5 and of anatase into rutile phase of TiO2. However, the NO removal activity of V2O5/sulfated TiO2 catalyst including barium markedly decreased after a short aging time, 6 h at 600 °C. This may be due to the transformation of vanadium species to inactive V–O–Ba compound by the interaction with BaO which was formed by the decomposition of BaSO4 on the catalyst surface at high reaction temperature of 600 °C. The addition of SO2 to the feed gas stream could partly restore the NO removal activity of thermally aged V2O5/sulfated TiO2 catalyst containing barium.  相似文献   

10.
This article discusses a mechanism for preparing perovskite powders, 0.75Pb(Ni1/3Nb2/3)O3-0.25PbTiO3 (PNN-PT), using a semichemical method (SCM).Precursors were prepared by adding aqueous Ni(Ac)2 solutions to an alcohol slurry of PbO, Nb2O5, and TiO2. The TG-DTG and DSC analysis of the precursors and XRD analysis of the powders at different thermal treatment temperatures showed that the reaction mechanisms in this method differ from those in the conventional mixed-oxide method. The aqueous Ni(Ac)2 solution reacted with PbO to form Pb(Ac)2 · Pb(OH)2 · H2O and Ni(OH)2, which decomposed to form nascent PbO and NiO, thereby improving the reactivity and distribution of PbO and NiO. Pb3Nb2O8 and NiNb2O6 formed and were easily converted into the perovskite phase during the thermal treatment process. At a thermal treatment temperature of 850°C, the content of the perovskite phase reached 98%. Pyrochlore-free PNN-PT ceramic was obtained after 2 h of sintering at 1100°C, and its dielectric properties were found to be excellent at temperatures ranging between -55 and 120°C.  相似文献   

11.
The thermal decomposition up to 400 °C of ammonium ferric citrate hydrate, of unknown structure and formula weight, was studied by thermogravimetry, differential thermal analysis, infrared (IR) spectroscopy and X-ray diffractometry. The possible identities of the formula weight and the intermediate products of calcination are discussed. The results revealed that the parent material is amorphous and contains two moles of water and two moles of ammonia. Decomposition takes place via six weight-loss processes, three endothermic (90–230 °C) and three exothermic (240–298 °C), leading eventually to the formation of Fe2O3. The intermediate solid products are mainly unstable amorphous oxycarbonates, as indicated by X-ray and IR spectroscopies. The gas-phase decomposition products identified by IR spectroscopy are NH3, CO2, CO, CH3COCH3, CH4 and NH4OH. Surface area measurement and scanning electron microscopy showed that Fe2O3, the final product at 400 °C, hada surface area of 40 m2/g and good crystalline and porous character.  相似文献   

12.
基于石灰石热重-差示扫描量热(TG-DSC)分析结果,分别在不同浓度的二氧化碳(二氧化碳与空气的混合气)气氛下对石灰石进行热分解特性研究。TG和DSC分析结果表明,碳酸钙分解是吸热反应,反应温度范围为750~950 ℃;提高升温速率,反应进程加快,TG曲线向高温区移动,DSC曲线吸热峰和吸热面积明显增大;反应气氛中二氧化碳浓度提高,TG曲线稍微向高温区移动,反应起始温度相同,反应终止温度相差约20 ℃。在高浓度二氧化碳气氛下,石灰石分解遵循随机成核和随后生长模型。此研究结果可为进一步优化石灰石煅烧工艺以及煅烧炉的设计提供理论支持。  相似文献   

13.
Phase changes in high temperature treated (>900 °C) 8 or 20 wt% BaO supported on γ-Al2O3 model lean NOx trap (LNT) catalysts, induced by NO2 and/or H2O adsorption, were investigated with powder X-ray diffraction (XRD), solid state 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, and NO2 temperature programmed desorption (TPD) experiments. After calcination in dry air at 1000 °C, the XRD and solid state 27Al MAS NMR results confirm that stable surface BaO and bulk BaAl2O4 phases are formed for 8 and 20 wt% BaO/Al2O3, respectively. Following NO2 adsorption over these thermally treated samples, some evidence for nanosized Ba(NO3)2 particles are observed in the XRD results, although this may represent a minority phase. However, when water was added to the thermally aged samples after NO2 exposure, the formation of bulk crystalline Ba(NO3)2 particles was observed in both samples. Solid state 27Al MAS NMR is shown to be a good technique for identifying the various Al species present in the materials during the processes studied here. NO2 TPD results demonstrate a significant loss of uptake for the 20 wt% model catalysts upon thermal treatment. However, the described phase transformations upon subsequent water treatment gave rise to the partial recovery of NOx uptake, demonstrating that such a water treatment of thermally aged catalysts can provide a potential method to regenerate LNT materials.  相似文献   

14.
The use of dry injection of sorbents for control of S O2 in conjunction with a fabric filter is currently undergoing evaluation at the large pilot plant level, and is being considered for full scale application. This paper discusses a recently developed model for predicting the removal efficiencies of S O2 as a function of system operating parameters, and utilizing a semi-emperical pore plugging experience to account for the observed reaction die off behavior. The model assumes that the reaction between the gas and the solid occurs in two phases; (1) in a transport-line section where the finely powdered solid is injected and mixed with the flue gases, and (2) across the filter cake which develops at the fabric filter. In the current development of the model, isothermal conditions are assumed. Comparisons between predicted and reported values of S O2 removal are given for the Na2C03—S O2 system  相似文献   

15.
CO2 absorption and regeneration of alkali metal-based solid sorbents   总被引:1,自引:0,他引:1  
Potassium-based sorbents were prepared by impregnation with potassium carbonate on supports such as activated carbon (AC), TiO2, Al2O3, MgO, SiO2 and various zeolites. The CO2 capture capacity and regeneration property were measured in the presence of H2O in a fixed-bed reactor, during multiple cycles at various temperature conditions (CO2 capture at 60 °C and regeneration at 130–400 °C). Sorbents such as K2CO3/AC, K2CO3/TiO2, K2CO3/MgO, and K2CO3/Al2O3, which showed excellent CO2 capture capacity, could be completely regenerated above 130, 130, 350, and 400 °C, respectively. The decrease in the CO2 capture capacity of K2CO3/Al2O3 and K2CO3/MgO, after regeneration at temperatures of less than 200 °C, could be explained through the formation of KAl(CO3)2(OH)2, K2Mg(CO3)2, and K2Mg(CO3)2·4(H2O), which did not completely converted to the original K2CO3 phase. In the case of K2CO3/AC and K2CO3/TiO2, a KHCO3 crystal structure was formed during CO2 absorption, unlike K2CO3/Al2O3 and K2CO3/MgO. This phase could be easily converted into the original phase during regeneration, even at a low temperature (130 °C). Therefore, the formation of the KHCO3 crystal structure after CO2 absorption is an important factor for regeneration, even at the low temperature. The nature of support plays an important role for CO2 absorption and regeneration capacities. In particular, the K2CO3/TiO2 sorbent showed excellent characteristics in CO2 absorption and regeneration in that it satisfies the requirements of a large amount of CO2 absorption (mg CO2/g sorbent) and fast and complete regeneration at a low temperature condition (1 atm, 150 °C).  相似文献   

16.
In the present study, we have examined sulfation of cerium oxide via impregnation of (NH4)2SO4, followed by heating in the temperature range of 220–720°C, using Raman Spectroscopy. Based on the SO and SO stretching frequencies in the range of 900–1400 cm−1, a wide range of surface oxysulfur species and bulk cerium-oxy-sulfur species are identified. At 220°C, a mixture of (NH4)2SO4 crystals, SO2−4(aq) and HSO1−r(aq) is found to have formed on ceria's surface, whereas complete conversion of (NH4)2SO4 to SO2−4(aq) and HSO1−4(aq) occurs at 280°C. At 350°C, formation of a mixture of surface pyrosulfate S2O2−7(surf.0, consisting of two SO oscillators and a bulk type compound identified as Ce(IV)(SO4)x(SO3)2−x (0 < x < 2) have been observed. Upon introduction of moisture, the former transforms to HSO1−4(surf.), whereas the latter remains unchanged. At 400°C, only the bulk type compound can be observed. At 450°C, only Ce2(SO4)3 is generated and remains stable until 650°C. Further increase in the temperature to 720°C results in the formation of CeOSO4. The present study not only provides a more thorough understanding of the sulfation of cerium oxide at a molecular level, but also demonstrates that Raman spectroscopy is a highly effective technique to characterize sulfation of metal oxides.  相似文献   

17.
Studies of the sintering behaviour of NiMn2O4 semiconducting ceramics at 1100°C under oxygen atmosphere show the advantage of a powder prepared by thermal decomposition of oxalate mixed crystals NiMn2 (C2O4)3. 6H2O at 450°C for the formation of dense ceramics with homogeneous microstructure. The microstructure of the semiconductor ceramics was established by image analysis. SEM and EDX indicate a phase separation related to partial oxygen loss as observed by thermogravimetry and redox analytic measurements. Reoxidation to a single-phase homogeneous microstructure by annealing at 800°C is possible only in porous samples. NiMn2O4 is not stable in oxygen at 1100°C. The spinel decomposes into NiO and a Mn-rich spinel matrix NixIIMn1−xIIMn2IIIO4. For producing a reproducible semiconducting ceramics it is necessary to stimulate sintering by separation of NiO. A one-phase spinel is obtained by reoxidation of long duration.  相似文献   

18.
The storage and release of NO2 on alumina-supported barium oxide has been studied with particular attention to the stoichiometry of the two processes. At 400 °C the storage process is characterised by a short period of complete uptake, possibly as nitrito or nitro species, followed by a slower partial uptake in which approximately one NO is released for every three NO2 lost. The latter reaction appears to supply the oxygen necessary to store NO2 as nitrate ions. Molecular O2 has little direct involvement even if in large excess. The second storage reaction also occurs, but to a much lesser extent, with Al2O3 alone. During temperature programmed desorption, release of NOx from Al2O3 peaks at 430 °C with evolution of NO2 and some O2. Release from BaO/Al2O3 exhibits an additional peak near 520 °C corresponding to formation of NO and a higher O2 concentration. The NO may arise from NO2 since BaO/Al2O3 has activity for NO2 decomposition by 500 °C. Although CO2 at low concentration is rapidly taken up by BaO/Al2O3 at 400 °C it is displaced by NO2 and does not interfere with storage. Thermodynamic calculations show that the formation of Ba(NO3)2 by the reaction of NO2 with bulk BaCO3 under the conditions used here is more favourable above 380 °C if NO is evolved than if O2 is consumed.  相似文献   

19.
A series of Pt-Ba/Al2O3 catalysts with Ba-loadings in the range 4.5–28 wt.% has been prepared by wet impregnation of Pt/Al2O3 with barium acetate (Ba(Ac)2) as Ba precursor. The build-up and thermal stability of the deposited Ba-containing species was followed by means of XRD and thermogravimetry (TG) combined with mass spectroscopy (MS). Samples were characterized before and after thermal treatment (calcination). The study showed that the thermal stability of the Ba-containing phases depends on their interaction with the alumina support and the presence of dispersed platinum. In calcined catalysts, three different Ba-containing species could be distinguished based on their crystallinity and thermal stability. The relative concentration of these species varied with the Ba-loading. The first layer of Ba-containing species, corresponding to saturation of the alumina surface with Ba(Ac)2, contained up to 12.5 wt.% of Ba in the form of amorphous BaO. Increasing the Ba-loading further resulted in 5–6 wt.% of Ba in the form of amorphous carbonates with relatively low thermal stability (LT-BaCO3). At Ba-loadings higher than about 16 wt.%, crystalline barium carbonate became discernible which exhibited remarkably higher thermal stability (HT-BaCO3). NOx storage tests accomplished by exposing the catalysts to pulses of NO in oxygen containing carrier gas at 300 °C indicated that from all characterized Ba-containing phases, LT-BaCO3 possesses the highest reactivity for NOx storage, i.e. LT-BaCO3 is transformed most rapidly to Ba(NO3)2.  相似文献   

20.
Well crystallised aluminium borate Al18B4O33 has been synthesised from alumina and boric acid with a BET area of 18 m2/g after calcination at 1100 °C. Afterwards, 2 wt.% Pd/Al18B4O33 was prepared by conventional impregnation of Pd(NO3)2 aqueous solution and calcination in air at 500 °C. The catalytic activity of Pd/Al18B4O33 in the complete oxidation of methane was measured between 300 and 900 °C and compared with that of Pd/Al2O3. Pd/Al18B4O33 exhibited a much lower activity than Pd/Al2O3 when treated in hydrogen at 500 °C or aged in O2/H2O (90:10) at 800 °C prior to catalytic testing. Surprisingly, a catalytic reaction run up to 900 °C in the reaction mixture induced a steep increase of the catalytic activity of Pd/Al18B4O33 which became as active as Pd/Al2O3. Moreover, the decrease of the catalytic activity observed around 750 °C for Pd/Al2O3 and attributed to PdO decomposition into metallic Pd was significantly shifted to higher temperatures (820 °C) in the case of Pd/Al18B4O33. The existence of two distinct types of PdO species formed on Al18B4O33 and being, respectively, responsible for the improvement of the activity at low and high temperature was proposed on the basis of diffuse reflectance spectroscopy and temperature-programmed desorption of O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号