首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of electrochemical pumping of oxygen on the rate of carbon monoxide oxidation on Au electrode-catalyst in a solid oxygen conducting electrolyte cell has been demonstrated. The induced change in the reaction rate at the cathodic polarization of an Au electrode was an order of magnitude higher than the rate of O2– pumping from the reaction zone through the electrolyte. The anodic polarization of the Au electrode (O2– pumping to the reaction zone through the electrolyte) caused purely Faradaic changes in the reaction rate.  相似文献   

2.
Studies of carbon monoxide oxidation on an Ag-25 at% Pd alloy electrode in a cell with a solid oxygen-conducting electrolyte - CO+O2, Ag-Pd | 0.9 ZrO2+0.1Y2O3 | Pt+PrO2-x, air - were carried out. XRD, SEM and XPS techniques were used for characterisation of the Ag-Pd alloy electrode. The non-Faradaic effect of electrochemical oxygen pumping on the rate of carbon monoxide oxidation was demonstrated. The induced change in the reaction rate at cathodic polarization of the Ag-Pd alloy electrode was an order of magnitude higher than the rate of oxygen pumping from the reaction zone through the electrolyte. The observed phenomenon was qualitatively explained on the base of a chain reaction mechanism involving electrochemically generated oxygen species.  相似文献   

3.
The electrochemical promotion of catalysis (or NEMCA effect) was studied for the CO oxidation and water gas shift reaction on a Pt anode in a polymer electrolyte membrane (PEM) fuel cell. It was found that this phenomenon plays a significant role in a normal fuel cell operation (fuel mixture – air) but not in a hydrogen pumping operation (fuel mixture – H2). This implies that the role of oxygen crossover in the electropromotion (EP) of CO oxidation is vital. During fuel cell operation, the increase in the rate of CO consumption is 2.5 times larger than the electrochemical rate, I/2F of CO oxidation, while for oxygen bleeding conditions (fuel mixture + O2−air) the increase is five times larger than I/2F. This shows that the catalytic properties of the Pt anode are significantly modified by varying the catalyst potential. In order to confirm the role of oxygen crossover, Nafion membranes (117, 1135) with different thickness, were studied. The results show that upon decreasing the membrane thickness the crossover is increased and thus the electrochemical promotion effect becomes more pronounced.  相似文献   

4.
The partial oxidation of methane was studied on Pt/Al2O3, Pt/ZrO2, Pt/CeO2 and Pt/Y2O3 catalysts. For Pt/Al2O3, Pt/ZrO2 and Pt/CeO2, temperature programmed surface reaction (TPSR) studies showed partial oxidation of methane comprehends two steps: combustion of methane followed by CO2, and steam reforming of unreacted methane, while for Pt/Y2O3 a direct mechanism was observed. Oxygen Storage Capacity (OSC) evaluated the reducibility and oxygen transfer capacity of the catalysts. Pt/CeO2 catalyst showed the highest stability on partial oxidation. The results were explained by the higher reducibility and oxygen storage/release capacity which allowed a continuous removal of carbonaceous deposits from the active sites, favoring the stability of the catalyst, For Pt/Al2O3 and Pt/ZrO2 catalysts the increase of carbon deposits around or near the metal particle inhibits the CO2 dissociation on CO2 reforming of methane. Pt/Y2O3 was active and stable for partial oxidation of methane, and its behavior was explained by a change in the reaction mechanism.  相似文献   

5.
The partial oxidation of methane was studio on Pt/Al2O3, Pt/ZrO2, Pt/CeO2 and Pt/Y2O3 catalysts. For Pt/Al2O3, Pt/ZrO2 and Pt/CeO2, temperature programmed surface reaction (TPSR) studies showed partial oxidation of methane comprehends two steps: combustion of methane followed by CO2 and steam reforming of unreacted methane, while for Pt/Y2O3 a direct mechanism was observed. Oxygen Storage Capacity (OSC) evaluated the reducibility and oxygen transfer capacity of the catalysts. Pt/CeO2 catalyst showed the highest stability on partial oxidation. The results were explained by the higher reducibility and oxygen storage/release capacity which allowed a continuous removal of carbonaceous deposits from the active sites, favoring the stability of the catalyst. For Pt/Al2O3 and Pt/ZrO2 catalysts the increase of carbon deposits around or near the metal particle inhibits the CO2 dissociation on CO2 reforming of methane. Pt/Y2O3 was active and stable for partial oxidation of methane and its behaviour was explained by a change in the reaction mechanism.  相似文献   

6.
The paper is an overview of the results of the investigation on electrochemical promotion of three catalytic reactions: methane oxidation with oxygen, NO reduction with hydrogen at 135 °C and Fischer–Tropsch synthesis (FTS) at 170 °C in the [CH4/O2(or NO/H2 or CO/H2)/Ar//Pt (or Pt/Ru)//PBI(H3PO4)/H2, Ar] fuel cell. It has been shown that the partial methane oxidation to C2H2 and the C2 selectivity were electrochemically promoted by the negative catalyst polarization. This was also the case in NO reduction with hydrogen for low NO and H2 partial pressures. In both cases the catalytic reactions have been promoted by the electrochemically produced hydrogen. It has been found that the NO reduction with hydrogen on the Pt/PBI strongly depends on NO and hydrogen partial pressures in the working gas mixture. At higher NO and H2 partial pressures the catalysis is promoted by the electrochemical pumping of H+ from the catalyst, i.e. at positive polarization. FTS demonstrated the highest methane production rate (11% of CO conversion) at zero fuel cell voltage.  相似文献   

7.
Electrochemical conversion of methane has been studied over a Pt electrode in a solid oxygen conducting electrolyte cell at 800°C. It was found that the Pt electrode is an active electrode-catalyst in the partial oxidation of methane to syngas. Carbon mon-oxide selectivity and yield of 85 and 65% respectively were reached. Potentialities of the electrochemical route for production of syngas from methane against the conventional catalytic way are briefly discussed.  相似文献   

8.
We communicate experimental results for the oxidation of methane by oxygen over alumina supported Pd and Pt monolith catalysts under transient conditions. Temperature programmed reaction (TPReaction) and reactant pulse-response (PR) experiments have been performed, using a continuous gas-flow reactor equipped with a downstream mass spectrometer for gas phase analysis. Special attention was paid to the influence of gas composition changes, i.e., O2 and H2 pulsing, respectively, on the methane conversion. For Pt/Al2O3 oxygen pulsing can significantly increase the methane conversion which can be even further improved by pulsing hydrogen instead. Such transient effects are not observed for the Pd/Al2O3 catalyst for which instead constantly lean conditions is beneficial. Our results suggest that under lean conditions Pd and Pt crystallites may undergo bulk- and partial (surface oxide formation) oxidation, respectively, which for Pd results in more active surfaces, while for Pt the activity is reduced. The latter seems to connect to a lowering of the ability to dissociate methane.  相似文献   

9.
The SSITKA measurements were performed in the steady state of complete methane oxidation on the Pd/Al2O3 and Pt/Al2O3 catalysts. It was found that the number of intermediates and their average life-time on the catalyst surface changes with the increase of reaction temperature. On the Pd/Al2O3 catalyst there is larger number of active centres than on Pt/Al2O3 catalyst which permits the course of methane oxidation at lower temperatures.  相似文献   

10.
The polymer electrolyte membrane fuel cell (PEMFC) needs purified hydrogen fuel from hydrocarbon reforming and water-gas shift (WGS) reaction. Concentration of CO should be 10 ppm level to avoid poisoning of the platinum anode electrode. For this, preferential oxidation of carbon monoxide (PROX) reaction is essential. In this study, a novel pretreatment technique was applied to a conventional Pt/γ-Al2O3 catalyst. Oxygen-treated, water-treated, and conventional Pt/γ-Al2O3 catalyst were prepared and their performances in the PROX reaction were investigated in a simulated hydrogen-rich reaction conditions. Our results showed that catalytic activity of the oxygen-treated 5% Pt/γ-Al2O3 catalyst for the CO conversion increased dramatically especially at the low temperature below 100 °C. The enhancement is attributed to the formation of well-dispersed small Pt particles.  相似文献   

11.
Preferential oxidation (PROX) reaction of CO in H2 catalyzed by a new catalyst of FeO x /Pt/TiO2 (Fe: Pt: TiO2 = 100: 1: 100) was studied by dynamic in-situ DRIFT-IR spectroscopy. The oxidation of CO is markedly enhanced by H2 and H2O, and the enhancement by H2/D2 and H2O/D2O takes a common hydrogen isotope. Dynamics of DRIFT-IR spectroscopy suggests that the oxidation of CO with O2 in the absence of H2 proceeds via bicarbonate intermediate. In contrast, rapid oxidation of CO in the presence of H2 proceeds via HCOO intermediate and the subsequent oxidation of HCOO by the reaction with OH, that is, CO + OH→ HCOO and HCOO + OH → CO2 + H2O. The latter reaction is a rate determining step being responsible for a common hydrogen isotope effect by H2/D2 and H2O/D2O.  相似文献   

12.
Partial oxidation of methane to methanol via post-plasma catalysis using a dielectric-barrier discharge was performed under mild reaction conditions. Air was used as the oxidizing co-reactant because of its economical practicality. Three catalysts impregnated with Pt, Fe2O3, CeO2 on ceramic supports located downstream of the discharge zone were examined for increased selectivity towards methanol. It was found that all three catalysts had no significant effect on the conversion of methane, but enhanced methanol selectivity, which could be explained by a two-stage reaction mechanism. The Fe2O3-based catalyst showed the best catalytic activity, and high stability in the reaction. The methanol selectivity of the Fe2O3-assisted plasma process was 36% higher than that of the non-catalytic system at a rather low catalyst temperature (150 °C). In addition, the effects of input power, discharge frequency, discharge gap distance, total flow rate, and methane/air ratio on methane conversion and methanol yield were also studied.  相似文献   

13.
This paper presents a performance analysis of a dual-bed autothermal reformer for hydrogen production from methane using a non-isothermal, one dimensional reactor model. The first section of Pt/Al2O3 catalyst is designed for oxidation reaction, whereas the second one based on Ni/MgAl2O4 catalyst involves steam reforming reaction. The simulation results show that the dual-bed autothermal reactor provides higher reactor temperature and methane conversion compared with a conventional fixed-bed reformer. The H2O/CH4 and O2/CH4 feed ratios affect the methane conversion and the H2/CO product ratio. The addition of steam at lower temperatures to the steam reforming section of the dual-bed reactor can produce the synthesis gas with a higher H2/CO product ratio.  相似文献   

14.
Mono and multi-noble metal particles on Al2O3 were prepared in one step by flame spray pyrolysis (FSP) of the corresponding noble metal precursors dissolved in methanol and acetic acid (v/v 1:1) or xylene. The noble metal loading of the catalysts was close to the theoretical composition as determined by WD-XRF and LA-ICP-MS. The preparation method was combined with high-throughput testing using an experimental setup consisting of eight parallel fixed-bed reactors. Samples containing 0.1–5 wt% noble metals (Ru, Rh, Pt, Pd) on Al2O3 were tested in the catalytic partial oxidation of methane. The ignition of the reaction towards carbon monoxide and hydrogen depended on the loading and the noble metal constituents. The selectivity of these noble metal catalysts towards CO and H2 was similar under the conditions used (methane: oxygen ratio 2:1, temperature from 300 to 500 °C) and exceeded significantly those of gold and silver containing catalysts.Selected catalysts were further analysed using XPS, BET, STEM-EDXS and XANES/EXAFS. The catalysts exhibited generally a specific surface area of more than 100 m2/g, and were made up of ca. 10 nm alumina particles on which the smaller noble metal particles (1–2 nm, partially oxidized state) were discernible. XPS investigation revealed an enrichment of noble metals on the alumina surface of all samples. The question of alloy formation was addressed by STEM-EDXS and EXAFS analysis. In some cases, particularly for Pt–Pd and Pt–Rh, alloying close to the bulk alloys was found, in contrast to Pt–Ru being only partially alloyed. In situ X-ray absorption spectroscopy on selected samples was used to gain insight into the oxidation state during ignition and extinction of the catalytic partial oxidation of methane to hydrogen and carbon monoxide.  相似文献   

15.
A novel plate-type anodic alumina supported 17.9 wt% Ni/Al2O3/alloy showed a quick deactivation in daily start-up and shut down (DSS) steam reforming of methane (SRM) at 700 °C, because of the Ni oxidation reaction with steam. When 0.078 wt% Pt was doped, the catalyst exhibited self-activation and self-regeneration ability, while 3000 h continual and 500-time DSS stability was testified. Further, this Pt–Ni catalyst also showed excellent reactivity during carbon dioxide reforming of methane (CMR) and partial oxidation of methane reaction (POM). According to the TPR and XRD analyses, the H2 spillover effect and the formation of Pt–Ni alloy were believed to be the main reason for the reactivity improvement of this catalyst.  相似文献   

16.
The extent of irreversible deactivation of Pt towards hydrogen oxidation reaction (HOR) due to sulfur adsorption and subsequent electrochemical oxidation is quantified in a functional polymer electrolyte membrane (PEM) fuel cell. At 70 °C, sequential hydrogen sulfide (H2S) exposure and electrochemical oxidation experiments indicate that as much as 6% of total Pt sites are deactivated per monolayer sulfur adsorption at open-circuit potential of a PEM fuel cell followed by its removal. The extent of such deactivation is much higher when the electrode is exposed to H2S while the fuel cell is operating at a finite load, and is dependent on the local overpotential as well as the duration of exposure. Regardless of this deactivation, the H2/O2 polarization curves obtained on post-recovery electrodes do not show performance losses suggesting that such performance curves alone cannot be used to assess the extent of recovery due to sulfur poisoning. A concise mechanism for the adsorption and electro-oxidation of H2S on Pt anode is presented. H2S dissociatively adsorbs onto Pt as two different sulfur species and at intermediate oxidation potentials, undergoes electro-oxidation to sulfur and then to sulfur dioxide. This mechanism is validated by charge balances between hydrogen desorption and sulfur electro-oxidation on Pt. The ignition potential for sulfur oxidation decreases with increase in temperature, which coupled with faster electro-oxidation kinetics result in the easier removal of adsorbed sulfur at higher temperatures. Furthermore, the adsorption potential is found to influence sulfur coverage of an electrode exposed to H2S. As an implication, the local potential of a PEM fuel cell anode exposed to H2S contaminated fuel should be kept below the equilibrium potential for sulfur oxidation to prevent irreversible loss of Pt sites.  相似文献   

17.
A solid state electrochemical reactor is described in which reactants can be oxidised at high temperatures over an anode/catalyst using co-fed oxygen gas as well as electrochemically supplied oxygen. The setup permits injection of isotopic pulses in the reactant streams. The composition and isotopic distribution in the products are recorded with a quadrupole mass spectrometer. The use of the system is exemplified by oxidation of methane over a Au + SrFeO3?δ//YSZ anode at 800–850°C. Pulses of 18O2 in the stream of co-fed O2 were used to study the reactivity and products of gaseous oxygen as distinguished from the electrochemically supplied oxygen. The results indicate that the anode used supports oxygen pumping, but is only moderately active for methane oxidation. The products are mainly CO and CO2. The content of 18O in the products is low, indicating that methane oxidation takes place by 16O-rich lattice oxygen. In comparison, a reference Au//YSZ electrode was found to be a slower anode for oxygen pumping, but a better catalyst for the reaction between CH4 and gaseous O2, seemingly involving adsorbed oxygen.  相似文献   

18.
The effects of Pt trace addition on the oxi-reduction properties of the Ni/Al2O3 and Ni/La–Al2O3 catalysts during partial oxidation of methane (POM) and autothermal reforming of methane (ATR) were investigated. The xPt–Ni/yLa–Al2O3 catalysts containing 15 wt% of Ni, 0 or 12 wt% of La and 0 or 0.05 wt% of Pt were characterized by temperature-resolved X-ray absorption near edge structure (XANES) spectroscopy under various atmospheres.The in situ XANES analysis for Pt–Ni/Al2O3 under H2 and CO revealed that the presence of Pt sites can initiate the NiO reduction process by rapid dissociation of H2 and migration of atomic H to the NiO surface by hydrogen spillover. On the other hand, in situ XANES analysis under CH4 showed that the presence of Pt sites induces the activation of the methane, probably by initial dissociation of methane (CH4 → CH3 + H) followed by migration of atomic H to the NiO surface. In situ XANES experiments under a POM mixture demonstrate that Pt has an important role keeping Ni in the metallic state. The catalytic test results for POM and ATR demonstrate that Pt is an important promoter to maintain Ni in the metallic state at the inlet region of the catalytic bed, where CH4 and O2 coexist.  相似文献   

19.
The kinetics of the H2 oxidation reaction at Nafion film covered Pt-black rotating disk electrodes (RDEs) in 0.5 M H2SO4 at 298 K was investigated by varying the Pt loading, Nafion film thickness, and rotating rate. The equation describing the H2 oxidation kinetics at an RDE with a Nafion film covered porous Pt layer was derived, assuming a Tafel-Volmer mechanism and taking into account the mass transfer resistances in the aqueous electrolyte, Nafion film, and Pt layer. The H2 oxidation reaction at the Pt layer was proved to be reversible and the measurable current density was determined entirely by the mass transfer of H2 in the aqueous electrolyte and the Nafion film; the apparent kinetic current density measured was due to the experimental error. More accurate results of kinetic analysis were obtained in this work than our results reported previously.  相似文献   

20.
The electrochemical promotion of catalysis (EPOC) of propene combustion was investigated using Pt sputtered thin film on an O2− conductor, 8 mol% Y2O3-stabilized-ZrO2 (YSZ). In order to separate the influence of the thermal migration of the O2− oxide ions from the electrolyte to the catalyst surface and the impact of an electrical polarization on the catalytic activity, several light-off experiments (cool down and heat up procedures) were successively performed under different polarizations, i.e. OCV, +2 and −2 V. These experiments have clearly shown that the presence of O2− (thermally or electrochemically induced) inhibits the catalytic activity of the platinum for the propene deep oxidation. These results demonstrate the importance to define a normalized rate enhancement ratio, ρ n , from a reference value of the catalytic rate corresponding to a Pt surface state free of O2− ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号