首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
大面积高光学质量金钢石自支撑膜的制备   总被引:2,自引:0,他引:2  
介绍了一种新型的磁控/流体动力学控制的大口径长通道直流电弧等离子体炬,并据此设计建造了100千瓦级高功率DC Arc Plasma Jet CVD金刚石膜沉积系统,讨论了该系统采用的半封闭式气体循环系统的工作原理,以及在气体循环条件下制备大面积高光学质量金刚石自支撑膜的研究结果。  相似文献   

2.
大面积高光学质量金刚石自支撑膜的制备   总被引:4,自引:0,他引:4  
介绍了一种新型的磁控/流体动力学控制的大口径长通道直流电弧等离子体炬,并据此设计建造了100千瓦级高功率DC Arc Plasma Jet CVD金刚石膜沉积系统.讨论了该系统采用的半封闭式气体循环系统的工作原理,以及在气体循环条件下制备大面积高光学质量金刚石自支撑膜的研究结果.  相似文献   

3.
大面积光学级金刚石自支撑膜制备、加工及应用   总被引:1,自引:0,他引:1  
大面积光学级金刚石自支撑膜的制备和加工是近年来在CVD金刚石研究领域的最重要的技术进展之一.在军事和民用光学领域有非常重要的应用前景.本文综述了北京科技大学近年来在CVD金刚石膜光学应用领域的研究进展.给出了采用高功率直流电弧等离子体喷射(DC Arc Plasma Jet)CVD工艺制备大面积光学级金刚石自支撑膜的研究结果,并报导了对所制备的光学级金刚石自支撑膜的光学、力学(机械)、热学、微波介电性能和抗激光损伤等方面的最新研究结果.  相似文献   

4.
金刚石自支撑膜的高温红外透过性能   总被引:2,自引:0,他引:2  
由于金刚石具有低吸收和优异的力学与导热性能使其成为长波(8~12μm)红外光学窗口材料的重要选择。对于许多极端条件的应用,化学气相沉积(CVD)金刚石自支撑膜的高温光学性质至关重要。应用直流电弧等离子喷射法制备光学级金刚石自支撑膜进行变化温度的红外光学透过性能研究,采用光学显微镜、X射线衍射、激光拉曼和傅里叶变换红外-拉曼光谱仪检测CVD金刚石膜的表面形貌、结构特征和红外光学性能。结果表明:在27℃时金刚石膜长波红外8~12μm之间的平均透过率达到65.95%,在500℃时8~12μm处的平均透过率为52.5%。透过率下降可分为3个阶段。对应于透过率随温度的下降,金刚石膜的吸收系数随温度的升高而增加。金刚石自支撑膜表面状态的变化,对金刚石膜光学性能的影响显著大于内部结构的影响。  相似文献   

5.
无支撑、光学级MPCVD金刚石膜的研制   总被引:1,自引:0,他引:1  
利用引进的6 kW微波等离子体化学气相沉积设备,进行了无支撑金刚石膜工艺的初步研究。在800~1050℃的基片温度范围内,金刚石膜都呈(111)择优取向;基片相对位置对沉积较大面积、光学级金刚石膜至关重要。制出0.25 mm厚Φ50 mm的无支撑金刚石膜。拉曼光谱和X射线衍射分析表明,合成的金刚石膜晶体结构完整,sp2含量极低;透过率测试结果说明了优良的光学性能:截止波长225 nm,光学透过率(λ≥2.5μm)≥70%。  相似文献   

6.
采用微波PCVD方法制备出直径50mm膜厚300um的大尺寸透明自支撑金刚石膜.在甲烷体积分数2%的条件下制备的透明自支撑金刚石膜经过两面抛光后在500cm-1-4000cm-1红外波段范同内红外透过率达到70%,但是其生长速率只有1um/h-2um/h.在体积分数4%甲烷浓度下制备的自支撑透明金刚石膜,其生长速率达到7um/h~8um/h,经过两面抛光之后膜厚为260um的金刚石膜的在500cm-1~4000cm-1红外波段范围内红外透过率达到60%左右,而且膜中心和边缘区的红外透过率基本相同.这些结果为大尺寸金刚石厚膜在红外窗口上的实际应用奠定了基础.  相似文献   

7.
为了解决化学气相沉积金刚石膜产业化进程中存在的生长速率慢、沉积尺寸小的难题,自行研制了适宜于大尺寸金刚石膜高速生长的电子辅助热灯丝式化学气相沉积(EAHFCVD)装置,通过反应气体中加氧将碳源浓度提高到10%以上,并优化反应压力与直流偏流密度二参数间的匹配,研究了该装置的生产特性,同时利用SEM、XRD和Raman光谱对沉积的金刚石膜进行了分析表征.研究结果表明,应用该装置高质量金刚石膜的沉积尺寸可达100mm以上,生长速率达到约10μm/h的水平,并制备出100mm×1 5mm的完整金刚石自支撑膜片,该技术可满足产业化生产的要求.  相似文献   

8.
采用甲烷和氢气作为工作气体,在热丝化学气相沉积(HFCVD)设备上采用五段式沉积法制备了金刚石薄膜,用扫描电子显微镜(SEM)、激光拉曼光谱仪、X射线衍射仪(XRD)、原子力显微镜(AFM)以及傅立叶红外光谱仪研究了金刚石膜的结构和性质.结果表明,采用五段式沉积法可以得到晶粒大小达到纳米级的、表面粗糙度较小、金刚石纯度较高的金刚石膜,其最大增透率超过70%,能满足作为光学窗口增透膜的应用要求.  相似文献   

9.
红外减反射保护膜具有特定的厚度要求,如能进一步减小无氢类金刚石膜(DLC)的光学吸收,就能使其在较大厚度时不过分损失光通量而得以广泛应用.从这点来讲,无氢类金刚石膜是一种极具开发潜力的材料.本文采用非平衡磁控溅射技术(UBMS)制备了无氢类金刚石膜,并研究了其厚度均匀性.研究结果表明:该非平衡磁控溅射装置有能力获得大于φ150 mm的均匀性范围.对DLC膜红外透射谱的分析表明,分别在Si和Ge基底表面单面制备的DLC薄膜,其峰值透射率在波数2983/cm时分别为68.83%和63.05%,这一结果接近无吸收碳材料理论上所能达到的值.同时,在5000到800/cm范围内,未发现明显的吸收峰.这些优良的光学特性表明,采用非平衡磁控溅射技术制备的无氢DLC膜可以作为窗口的红外增透保护膜使用.  相似文献   

10.
刘凤艳  刘宇星  刘敏蔷  侯碧辉 《功能材料》2004,35(Z1):2171-2173
由于金刚石与Si有较大的晶格失配度和表面能差,利用化学气相沉积(CVD)制备金刚石膜时,金刚石在镜面光滑的Si表面上成核率非常低.而负衬底偏压能够提高金刚石在镜面光滑的Si表面上的成核率,表明金刚石核与Si表面的结合力也得到增强.利用负偏压增强CVD系统制备金刚石膜时,气体辉光放电产生的离子对Si表面轰击,使得Si衬底表面产生了微缺陷(凹坑),增大了金刚石膜与Si衬底的结合面积.本工作主要从理论上研究离子轰击对金刚石膜与Si衬底结合力的影响.  相似文献   

11.
无支撑优质金刚石膜在微波真空器件和光学器件中的广泛应用,有赖于制备成本的下降和工艺的完善。结合微波等离子体化学气相沉积(MPCVD)金刚石膜的工艺研究结果,本文就沉积速率、晶面取向以及内应力的相关问题进行了初步探讨。对于给定的设备,沉积速率与多种因素有关,包括膜的质量、膜厚均匀性和有效沉积面积、以及形核的密度。在通常情况下,金刚石膜呈(111)择优取向,而样品位置下移5mm后,观察到(100)取向。对内应力的初步研究表明,CH4/H2比例较低(1.5)时,金刚石膜的内应力趋向于压应力,而(100)取向的出现则有助于使内应力降到最低。  相似文献   

12.
采用直流热阴极PCVD(Plasma chemical vapor deposition)法间歇生长模式制备金刚石膜,通过加入周期性的刻蚀阶段清除金刚石膜在一定生长期中形成的石墨和非晶碳等杂质,实现了金刚石膜生长的质量调控。间歇式生长过程分为沉积阶段和刻蚀阶段,两个阶段交替进行。采用Raman光谱、SEM和XRD对所制金刚石膜的品质进行了表征,并与同样生长条件下连续生长模式制备的金刚石膜样品进行了比较。结果表明,当单个生长周期为30 min(沉积时间为20 min、刻蚀时间为10 min)时,直流热阴极PCVD法间歇生长模式制备的金刚石膜中的非金刚石相杂质含量低于连续间歇生长模式制备的金刚石膜。  相似文献   

13.
使用纳米金刚石粉研磨工艺预处理硅片衬底抛光面,在低气压成核的条件下,以丙酮和氢气为反应物,采用传统的热丝辅助化学气相沉积法,制备了自支撑金刚石膜;通过射频磁控溅射法沉积氧化锌薄膜在自支撑金刚石膜的成核面,形成氧化锌/自支撑金刚石膜结构.通过光学显微镜、扫描电镜及原子力显微镜测试自支撑金刚石膜成核面的表面形貌.研究结果表明:成核期的低气压有助于提高成核密度,成核面表面粗糙度约为1.5 nm;拉曼光谱显示1334 cm-1附近尖锐的散射峰与金刚石SP3键相对应,成核面含有少量的石墨相,且受到压应力的作用;ZnO/自支撑金刚石膜结构的XRD谱显示,氧化锌薄膜有尖锐的(002)面衍射峰,是c轴择优取向生长的.  相似文献   

14.
基片位置对微波等离子体合成金刚石的影响   总被引:1,自引:0,他引:1  
用自制的微波功率为5kW的微波等离子体(MPCVD)装置、用H2/CH4/H2O作为反应气体在较高的沉积气压(12.0kPa)条件下,研究了基片放置在等离子体球边缘附近不同位置对CVD金刚石沉积和生长的影响。结果表明,CVD金刚石的形核和生长对环境的要求是不同的;在等离子体球边缘处不利于金刚石的形核,但有利于高质量金刚石的沉积。  相似文献   

15.
CVD金刚石膜的产业化应用与目前存在的问题   总被引:11,自引:0,他引:11  
在863计划的大力支持下,我国CVD金刚石膜研究在工具、热沉和光学应用等方面都取得了十分显著的进展,不仅显著缩小了与先进工业化国家的差距,而且已使我国开始进入产业化应用进程。目前国内已有一些小型高技术型公司和企业出现,但大都仅局限于金刚石厚膜工具(金刚石厚膜钎焊工具和金刚石拉丝模模芯)。在金刚石薄膜涂层工具、金刚石膜热沉和金刚石光学应用研究等方面已取得实质性进展,尽管离产业化应用仍有一定距离,但已具备产业化开发和市场应用的条件。本文针对我国CVD金刚石膜的产业化前景和目前存在的问题进行了讨论,并提出了建议。  相似文献   

16.
热阴极DC-PCVD方法制备的金刚石厚膜的生长特性和内应力   总被引:8,自引:5,他引:3  
采用热阴极DC PCVD(DirectCurrentPlasmaChemicalVaporDeposition)方法制备出大尺寸高质量的金刚石厚膜,研究了金刚石厚膜的生长特性和内应力状态。由热阴极DC PCVD方法制备的金刚石厚膜大多数为〈110〉取向,表面显露面主要是(100)面和(111)面,厚膜的表面被较多的孪晶所覆盖,部分(111)面退化为3个相互垂直的(110)面,孪晶使厚膜表面结晶特性复杂化,金刚石厚膜的晶粒沿生长方向呈现柱状生长。金刚石厚膜的生长速率随甲烷流量和工作气压的增加而增加,但随生长速率的提高金刚石膜的品质明显下降。金刚石厚膜的内应力以压应力为主,随着甲烷浓度的增加压应力增加,随着工作气压的增加压应力减小,到某个气压之后变为张应力。  相似文献   

17.
氧等离子体对金刚石膜的刻蚀研究   总被引:5,自引:0,他引:5  
用微波放电法产生氧等离子体,通过改变系统中氧的浓度和金刚石膜的温度研究了氧等离子体对CVD多晶金刚石膜刻蚀的影响。实验结果表明:随着氧浓度的增加和金刚石膜温度的提高,刻蚀作用加剧;而在较低的氧浓度和金刚石膜温度条件下金刚石膜的晶界处首先被刻蚀,说明金刚石膜的境界处含有较多的非金刚石碳相。并且从等离子体对(100)和(111)面的刻蚀现象可知(100)面的生长是二维生长,(111)面的生长是岛状生长。  相似文献   

18.
采用直流热阴极等离子体化学气相沉积(直流热阴极PCVD)方法,通过金刚石膜的间歇生长过程,引入氮原子的作用,实现对非金刚石成份的刻蚀和金刚石膜的择优取向生长,在CH4:N2:H2气氛下制备透明金刚石膜。金刚石膜的间歇式生长分为沉积阶段和刻蚀两个阶段,沉积阶段为20 min,刻蚀阶段为1 min,沉积和刻蚀通过温度的调节来实现,总的生长时间10 h;实验中主要改变的参数是N2气比例,将N2气流量与总气体流量的比例分为高、中、低三档分别进行实验。结果在CH4:N2:H2比例为2:20:180时获得了透明金刚石膜。金刚石膜样品用Raman光谱仪、SEM和XRD进行了表征,研究表明,直流热阴极PCVD间歇生长模式下,通过引入氮原子的作用,可以制备出(111)面取向的透明金刚石膜。  相似文献   

19.
采用热灯丝化学气相沉积(CVD)方法,通过独特的衬底表面预处理工艺及控制沉积参数,制备出了晶粒细、表面光滑的单片金刚石膜样品。采用SEM观察了样品生长面的表面形貌,通过激光Raman对样品进行了金刚石结构的确认。在450~4000cm~(-1)范围测试了金刚石膜样品的红外光学透过谱,通过分析认为:平均透过率随波长减小而衰减主要是由于金刚石膜生长面的表面粗糙度引起光谱散射造成的。  相似文献   

20.
衬底负偏压对线性离子束DLC膜微结构和物性的影响   总被引:1,自引:0,他引:1  
采用一种新型线性离子束PVD技术制备出大面积类金刚石薄膜(DLC膜),研究了衬底负偏压对薄膜微结构和物性的影响.结果表明:制备出的类金刚石薄膜在300 mm×100 mm范围内纵向厚度均方差约10-12 nm,横向薄膜厚度均方差约2-4 nm.随着衬底偏压的提高,薄膜中sp~3键的含量先增加后减小,在衬底偏压为-100 V时sp~3键的含量最大;DLC膜的残余应力、硬度和弹性模量与sp~3键的含量呈近似线性的关系,在衬底偏压为-100 V时其最大值分别为3.1 GPa、26 GPa和230 GPa.DLC薄膜的摩擦学性能与薄膜中sp~3碳杂化键的含量密切相关,但是受衬底偏压的影响不大,其摩擦系数大多小于0.25.偏压对磨损的影响很大,在偏压比较低(0~-200 V)时,薄膜的磨损率约为10~(-8)mm~3/N·m,偏压升高到300 V磨损率急剧提高到10~(-7)mm~3/N·m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号