首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composite materials of two‐dimensional structures are designed using the homogenization design method. The composite material is made of two or three different material phases. Designing the composite material consists of finding a distribution of material phases that minimizes the mean compliance of the macrostructure subject to volume fraction constraints of the constituent phases, within a unit cell of periodic microstructures. At the start of the computational solution, the material distribution of the microstructure is represented as a pure mixture of the constituent phases. As the iteration procedure unfolds, the component phases separate themselves out to form distinctive interfaces. The effective material properties of the artificially mixed materials are defined by the interpolation of the constituents. The optimization problem is solved using the sequential linear programming method. Both the macrostructure and the microstructures are analysed using the finite element method in each iteration step. Several examples of optimal topology design of composite material are presented to demonstrate the validity of the present numerical algorithm. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Fracture is one of the most common failure modes in brittle materials. It can drastically decrease material integrity and structural strength. To address this issue, we propose a level-set (LS) based topology optimization procedure to optimize the distribution of reinforced inclusions within matrix materials subject to the volume constraint for maximizing structural resistance to fracture. A phase-field fracture model is formulated herein to simulate crack initiation and propagation, in which a staggered algorithm is developed to solve such time-dependent crack propagation problems. In line with diffusive damage of the phase-field approach for fracture; topological derivatives, which provide gradient information for the topology optimization in a LS framework, are derived for fracture mechanics problems. A reaction-diffusion equation is adopted to update the LS function within a finite element framework. This avoids the reinitialization by overcoming the limitation to time step with the Courant-Friedrichs-Lewy condition. In this article, three numerical examples, namely, a L-shaped section, a rectangular slab with predefined cracks, and an all-ceramic onlay dental bridge (namely, fixed partial denture), are presented to demonstrate the effectiveness of the proposed LS based topology optimization for enhancing fracture resistance of multimaterial composite structures in a phase-field fracture context.  相似文献   

3.
Metamaterials are artificially engineered composites designed to have unusual properties. This article will develop a new level-set based topology optimization method for the computational design of multimaterial metamaterials with exotic thermomechanical properties. In order to generate metamaterials consisting of arrays of microstructures under periodicity, the numerical homogenization method is used to evaluate the effective properties of the microstructure, and a multiphase level-set model is used to evolve the boundaries of the multimaterial microstructure. The proposed method will produce material geometries with distinct interfaces and smoothed boundaries, which may facilitate the fabrication of the topologically optimized designs. Several numerical cases are used to demonstrate the effectiveness of the proposed method.  相似文献   

4.
New tools for the design of metamaterials with periodic microarchitectures are presented. Initially, a two‐scale material design approach is adopted. At the structure scale, the material effective properties and their spatial distribution are obtained through a Free Material Optimization technique. At the microstructure scale, the material microarchitecture is designed by appealing to a Topology Optimization Problem (TOP). The TOP is based on the topological derivative and the level set function. The new proposed tools are used to facilitate the search of the optimal microarchitecture configuration. They consist of the following: (i) a procedure to choose an adequate shape of the unit cell domain where the TOP is formulated and shapes of Voronoi cells associated with Bravais lattices are adopted and (ii) a procedure to choose an initial material distribution within the Voronoi cell being utilized as the initial configuration for the iterative TOP.  相似文献   

5.
This paper will develop a new robust topology optimization (RTO) method based on level sets for structures subject to hybrid uncertainties, with a more efficient Karhunen-Loève hyperbolic Polynomial Chaos–Chebyshev Interval method to conduct the hybrid uncertain analysis. The loadings and material properties are considered hybrid uncertainties in structures. The parameters with sufficient information are regarded as random fields, while the parameters without sufficient information are treated as intervals. The Karhunen-Loève expansion is applied to discretize random fields into a finite number of random variables, and then, the original hybrid uncertainty analysis is transformed into a new process with random and interval parameters, to which the hyperbolic Polynomial Chaos–Chebyshev Interval is employed for the uncertainty analysis. RTO is formulated to minimize a weighted sum of the mean and standard variance of the structural objective function under the worst-case scenario. Several numerical examples are employed to demonstrate the effectiveness of the proposed RTO, and Monte Carlo simulation is used to validate the numerical accuracy of our proposed method.  相似文献   

6.
An extension of the material design problem is presented in which the base cell that characterizes the material microgeometry is polygonal. The setting is the familiar inverse homogenization problem as introduced by Sigmund. Using basic concepts in periodic planar tiling it is shown that base cells of very general geometries can be analysed within the standard topology optimization setting with little additional effort. In particular, the periodic homogenization problem defined on polygonal base cells that tile the plane can be replaced and analysed more efficiently by an equivalent problem that uses simple parallelograms as base cells. Different material layouts can be obtained by varying just two parameters that affect the geometry of the parallelogram, namely, the ratio of the lengths of the sides and the internal angle. This is an efficient way to organize the search of the design space for all possible single‐scale material arrangements and could result in solutions that may be unreachable using a square or rectangular base cell. Examples illustrate the results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
This article introduces the element-propagating method to structural shape and topology optimization. Structural optimization based on the conventional level-set method needs to solve several partial differential equations. By the insertion and deletion of basic material elements around the geometric boundary, the element-propagating method can avoid solving the partial differential equations and realize the dynamic updating of the material region. This approach also places no restrictions on the signed distance function and the Courant–Friedrichs–Lewy condition for numerical stability. At the same time, in order to suppress the dependence on the design initialization for the 2D structural optimization problem, the strain energy density is taken as a criterion to generate new holes in the material region. The coupled algorithm of the element-propagating method and the method for generating new holes makes the structural optimization more robust. Numerical examples demonstrate that the proposed approach greatly improves numerical efficiency, compared with the conventional level-set method for structural topology optimization.  相似文献   

8.
J. Jia  W. Cheng  K. Long 《工程优选》2017,49(8):1335-1353
This article introduces thermal conductivity constraints into concurrent design. The influence of thermal conductivity on macrostructure and orthotropic composite material is extensively investigated using the minimum mean compliance as the objective function. To simultaneously control the amounts of different phase materials, a given mass fraction is applied in the optimization algorithm. Two phase materials are assumed to compete with each other to be distributed during the process of maximizing stiffness and thermal conductivity when the mass fraction constraint is small, where phase 1 has superior stiffness and thermal conductivity whereas phase 2 has a superior ratio of stiffness to density. The effective properties of the material microstructure are computed by a numerical homogenization technique, in which the effective elasticity matrix is applied to macrostructural analyses and the effective thermal conductivity matrix is applied to the thermal conductivity constraint. To validate the effectiveness of the proposed optimization algorithm, several three-dimensional illustrative examples are provided and the features under different boundary conditions are analysed.  相似文献   

9.
Material cloud method (MCM), a new approach for topology optimization, is presented. In MCM, an optimal structure can be obtained by manipulating the sizes and positions of material clouds, which are material patches with finite sizes and constant material densities. The optimal distributions of material clouds can be obtained by MCM using fixed background finite element meshes. In the numerical analysis procedure, only active elements, where more than one material cloud is contained, are treated. Optimal material distribution can be element‐wise extracted from the distribution of material clouds. With MCM, an expansion–reduction procedure of design domain can be naturally realized through movements of material clouds, so that a true optimal solution can be found without any significant increase of computational costs. It is also shown that a clear material distribution with narrow region of intermediate density can be obtained with relatively fast convergence. Several numerical examples are shown. Some of the results are compared with those of the traditional density distribution method (DDM). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This paper deals with generalized shape optimization of linearly elastic, three-dimensional continuum structures, i.e. we consider the problem of determining the structural topology (or layout) such that the shape of external as well as internal boundaries and the number of inner holes are optimized simultaneously. For prescribed static loading and given boundary conditions, the optimum solution is sought from the condition of maximum integral stiffness (minimum elastic compliance) subject to a specified amount of structural material within a given three-dimensional design domain. This generalized shape optimization problem requires relaxation which leads to the introduction of microstructures. A class of optimum three-dimensional microstructures and explicit analytical expressions for their optimum effective stiffness properties have been developed by Gibiansky and Cherkaev (1987) [Gibiansky, L.V., Cherkaev, A.V., 1987. Microstructures of composites of extremal rigidity and exact estimates of provided energy density (in Russian). Report (1987) No. 1155. A.F. Ioffe Physical-Technical Institute, Academy of Sciences of the USSR, Leningrad. English translation in: Kohn, R.V., Cherkaev, A.V. (Eds.), Topics in the Mathematical Modelling of Composite Materials. Birkhaüser, New York. 1997]. The present paper gives a brief account of the results in Gibiansky and Cherkaev (1987) which will be utilized for our microlevel problem analysis. It is a characteristic feature that the use of optimum microstructures renders the global problem convex if an appropriate parametrization is applied. Hereby local optima can be avoided and we can construct a simple gradient based numerical method of mathematical programming for solution of the complete optimization problem. Illustrative examples of optimum layout and topology designs of three-dimensional structures are presented at the end of the paper.  相似文献   

11.
In this study, a multimaterial topology optimization method using a single variable is proposed by combining the solid isotropic material with penalization method and the reaction-diffusion equation. Unlike ordinary multimaterial optimization, which requires several variables depending on the number of material types, this method intends to represent various materials as one variable. The proposed method combines two special functions in the sensitivity analysis of the objective function to converge the design variable into prespecified density values defined for each of the multimaterials. The composition constraint based on a normal distribution function is also introduced to estimate the distribution of each target density value in a single variable. It enables density exchange between multiple materials by increasing or decreasing the amount of a specific material. The proposed method is applied to structural and electromagnetic problems to verify its effectiveness, and its usefulness is also confirmed from the viewpoint of cost and computation time.  相似文献   

12.
A generalized optimization problem in which design space is also a design to be found is defined and a numerical implementation method is proposed. In conventional optimization, only a portion of structural parameters is designated as design variables while the remaining set of other parameters related to the design space are often taken for granted. A design space is specified by the number of design variables, and the layout or configuration. To solve this type of design space problems, a simple initial design space is selected and gradually improved while the usual design variables are being optimized. To make the design space evolve into a better one, one may increase the number of design variables, but, in this transition, there are discontinuities in the objective and constraint functions. Accordingly, the sensitivity analysis methods based on continuity will not apply to this discontinuous stage. To overcome the difficulties, a numerical continuation scheme is proposed based on a new concept of a pivot phase design space. Two new categories of structural optimization problems are formulated and concrete examples shown. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
The integrated optimization of lightweight cellular materials and structures are discussed in this paper. By analysing the basic features of such a two‐scale problem, it is shown that the optimal solution strongly depends upon the scale effect modelling of the periodic microstructure of material unit cell (MUC), i.e. the so‐called representative volume element (RVE). However, with the asymptotic homogenization method used widely in actual topology optimization procedure, effective material properties predicted can give rise to limit values depending upon only volume fractions of solid phases, properties and spatial distribution of constituents in the microstructure regardless of scale effect. From this consideration, we propose the design element (DE) concept being able to deal with conventional designs of materials and structures in a unified way. By changing the scale and aspect ratio of the DE, scale‐related effects of materials and structures are well revealed and distinguished in the final results of optimal design patterns. To illustrate the proposed approach, numerical design problems of 2D layered structures with cellular core are investigated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
This study proposes a stress analysis method for three-dimensionally fiber reinforced composite materials. In this method, the rule-of mixture for composites is successfully applied to 3-D space in which material properties would change 3-dimensionally. The fundamental formulas for Young's modulus, shear modulus, and Poisson's ratio are derived. Also, we discuss a strength estimation and an optimum material design technique for 3-D composite materials. The analysis is executed for a triaxial orthogonally woven fabric, and their results are compared to the experimental data in order to verify the accuracy of this method. The present methodology can be easily understood with basic material mechanics and elementary mathematics, so it enables us to write a computer program of this theory without difficulty. Furthermore, this method can be applied to various types of 3-D composites because of its general-purpose characteristics.  相似文献   

15.
考虑泊松效应的材料/结构一体化设计方法   总被引:1,自引:0,他引:1       下载免费PDF全文
龙凯  谷先广  韩丹 《复合材料学报》2017,34(6):1252-1260
为实现含有不同泊松比组分复合材料的优化设计,并考虑宏观结构及复杂的边界条件,提出了考虑泊松效应的材料/结构一体化设计方法,其显著特征在于不同组分材料中引入了泊松比插值,假设宏观结构由周期性排列的复合材料组成,复合材料含两种各向同性且泊松比不同的组分材料,以静态问题中柔顺度最小化或动态问题中特征值最大化为目标以及宏微观体积比为约束建立了拓扑优化模型。采用均匀化理论预测了复合材料等效性能,推导了目标函数对宏微观密度变量的敏度表达式。分别采用密度过滤和敏度过滤来消除宏微观拓扑优化中的不稳定性现象。采用优化准则法分别更新宏观、微观密度变量,考察了微观体积比和组分材料泊松比参数对优化结果的影响。三维数值算例结果表明所提出的一体化方法具有可行性和优越性。  相似文献   

16.
The discrete optimal orientation design of the composite laminate can be treated as a material selection problem dealt with by using the concept of continuous topology optimization method. In this work, a new bi‐value coding parameterization (BCP) scheme of closed form is proposed to this aim. The basic idea of the BCP scheme is to ‘code’ each material phase using integer values of +1 and –1 so that each available material phase has one unique ‘code’ consisting of +1 and/or –1 assigned to design variables. Theoretical and numerical comparisons between the proposed BCP scheme and existing schemes show that the BCP has the advantage of an evident reduction of the number of design variables in logarithmic form. The benefit is particularly remarkable when the number of candidate materials becomes important in large‐scale problems. Numerical tests with up to 36 candidate material orientations are illustrated for the first time to indicate the reliability and efficiency of the BCP scheme in solving this kind of problem. It proves that the BCP is an interesting and valuable scheme to achieve the optimal orientations for large‐scale design problems. Besides, a four‐layer laminate example is tested to demonstrate that the proposed BCP scheme can easily be extended to multilayer problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Eric Li  C.C. Chang  Z.C. He  Zhongpu Zhang  Q. Li 《工程优选》2016,48(12):2064-2089
It is well known that the finite element method (FEM) suffers severely from the volumetric locking problem for incompressible materials in topology optimization owing to its numerical ‘overly stiff’ property. In this article, two typical smoothed FEMs with a certain softened effect, namely the node-based smoothed finite element method (NS-FEM) and the cell-based smoothed finite element method, are formulated to model the compressible and incompressible materials for topology optimization. Numerical examples have demonstrated that the NS-FEM with an ‘overly soft’ property is fairly effective in tackling the volumetric locking problem in topology optimization when both compressible and incompressible materials are involved.  相似文献   

18.
This paper presents the development of a computational model for the topology optimization problem, using a material distribution approach, of a 2-D linear-elastic solid subjected to thermal loads, with a compliance objective function and an isoperimetric constraint on volume. Defining formally the augmented Lagrangian associated with the optimization problem, the optimality conditions are derived analytically. The results of analysis are implemented in a computer code to produce numerical solutions for the optimal topology, considering the temperature distribution independent of design. The design optimization problem is solved via a sequence of linearized subproblems. The computational model developed is tested in example problems. The influence of both the temperature and the finite element model on the optimal solution obtained is analysed.  相似文献   

19.
A. Radman  Y.M. Xie 《工程优选》2013,45(11):1331-1348
The aim of this study was to design isotropic periodic microstructures of cellular materials using the bidirectional evolutionary structural optimization (BESO) technique. The goal was to determine the optimal distribution of material phase within the periodic base cell. Maximizing bulk modulus or shear modulus was selected as the objective of the material design subject to an isotropy constraint and a volume constraint. The effective properties of the material were found using the homogenization method based on finite element analyses of the base cell. The proposed BESO procedure utilizes the gradient-based sensitivity method to impose the isotropy constraint and gradually evolve the microstructures of cellular materials to an optimum. Numerical examples show the computational efficiency of the approach. A series of new and interesting microstructures of isotropic cellular materials that maximize the bulk or shear modulus have been found and presented. The methodology can be extended to incorporate other material properties of interest such as designing isotropic cellular materials with negative Poisson's ratio.  相似文献   

20.
A new topology optimization scheme called the projection-based ground structure method (P-GSM) is proposed for linear and nonlinear topology optimization designs. For linear design, compared to traditional GSM which are limited to designing slender members, the P-GSM can effectively resolve this limitation and generate functionally graded lattice structures. For additive manufacturing-oriented design, the manufacturing abilities are the key factors to constrain the feasible design space, for example, minimum length and geometry complexity. Conventional density-based method, where each element works as a variable, always results in complex geometry with large number of small intricate features, while these small features are often not manufacturable even by 3D printing and lose its geometric accuracy after postprocessing. The proposed P-GSM is an effective method for controlling geometric complexity and minimum length for optimal design, while it is capable of designing self-supporting structures naturally. In optimization progress, some bars may be disconnected from each other (floating in the air). For buckling-induced design, this issue becomes critical due to severe mesh distortion in the void space caused by disconnection between members, while P-GSM has ability to overcome this issue. To demonstrate the effectiveness of proposed method, three different design problems ranging from compliance optimization to buckling-induced mechanism design are presented and discussed in details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号