首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two glial cell types surround olfactory axons and glomeruli in the olfactory bulb (OB) and may influence synapse development and regeneration. OB astrocytes resemble type-1 astrocytes, and OB ensheathing cells resemble non-myelinating Schwann cells. We have produced clonal OB astrocyte and ensheathing cell lines from rat neonatal and adult OB cultures by SV40 large T antigen transduction. These cell lines have been characterized by morphology, growth characteristics, immunophenotype, and ability to promote neurite outgrowth in vitro. Neonatal and adult ensheathing cell lines were found to support higher neurite outgrowth than OB astrocyte lines. Neonatal OB astrocyte lines were of two types, high and low outgrowth support. The low support astrocyte lines express J1 and a chondroitin sulfate-containing proteoglycan as do astrocytes encircling the neonatal glomeruli in vivo. The adult OB astrocyte cell lines supported lower levels of outgrowth than adult ensheathing cell lines. These results are consistent with a positive role for ensheathing cells in OB synapse regeneration, in vivo. Further, based on our results, we hypothesize that ensheathing cells and high-outgrowth astrocytes facilitate axon growth in vivo, while low outgrowth astrocytes inhibit axon growth and may facilitate glomerulus formation.  相似文献   

2.
Precisely localized focal stereotaxic electrolytic lesions were made in the corticospinal tract at the level of the first to second cervical segments in the adult rat. This consistently destroyed all central nervous tissue elements (axons, astrocytes, oligodendrocytes, microglia, and microvessels) in a highly circumscribed area. In a group of these rats immediately after lesioning, a suspension of cultured adult olfactory ensheathing cells was transplanted into the lesion site. Within the first week after transplantation, the cut corticospinal axons (identified by anterograde transport of biotin dextran) extended caudally along the axis of the corticospinal tract as single, fine, minimally branched sprouts that ended in a simple tip, often preceded by a small varicosity. By 3 weeks, the regenerating axons, ensheathed by P0-positive peripheral myelin had accumulated into parallel bundles, which now extended across the full length of the lesioned area and reentered the caudal part of the host corticospinal tract. The transplants contained two main types of cells: (1) p75-expressing S cells, which later formed typical peripheral one-to-one myelin sheaths around individual ensheathed axons, and (2) fibronectin-expressing A cells, which aggregated into tubular sheaths enclosing bundles of myelinated axons. The point of reentry of the axons into the central nervous territory of the caudal host corticospinal tract was marked by the resumption of oligodendrocytic myelination. Thus the effect of the transplant was to form a "patch" of peripheral-type tissue across which the cut central axons regenerated and then continued to grow along their original central pathway.  相似文献   

3.
The role of ensheathing cells, a macroglial cell type with a unique presence in the olfactory system, in the outgrowth of olfactory receptor cell neurites was explored in vitro. Glial cell cultures harvested from both the olfactory bulb nerve layer and the hippocampus were established and immunocytochemically characterized. The expression of the p75 low-affinity nerve growth factor receptor by ensheathing cells was used to distinguish them from other macroglial subpopulations. Results indicated that ensheathing cell cultures were approximately 80% pure. Olfactory receptor cells were cocultured with ensheathing or hippocampal glial cells or were seeded on laminin or poly-L-lysine as controls. Olfactory receptor cells extended the longest primary neurites when cocultured with ensheathing cells. Neurite extension on hippocampal glia and laminin was less extensive than that observed on ensheathing cells but higher than that on poly-L-lysine. The neurite outgrowth-promoting effect of ensheathing cells was, at least in part, mediated by diffusible factors, because olfactory receptor cell neurite extension could also be facilitated when receptor cells were cultured in ensheathing cell-conditioned media. In contrast, cortical neurons extended neurites of equivalent lengths on ensheathing and hippocampal glia. The results suggest that ensheathing cells may release factors that support the continuous outgrowth of olfactory receptor cell axons and, therefore, the capacity of this pathway to recover from injury.  相似文献   

4.
We have generated and characterized a multi-functional polyclonal anti-brain-derived neurotrophic factor antibody. Western blot analysis, dorsal root ganglion neurite outgrowth and dorsal root ganglion neuron survival assays showed that this antibody specifically recognized brain-derived neurotrophic factor and not the other neurotrophins. Furthermore, it was capable of blocking the functional effects of brain-derived neurotrophic factor. Using this antibody, we examined the expression of brain-derived neurotrophic factor in adult rat brains by immunohistochemistry. We found distinct brain-derived neurotrophic factor immunoreactivity in several structures of the brain. These included the neocortex, piriform cortex, amygdaloid complex, hippocampal formation, claustrum, some thalamic and hypothalamic nuclei, the substantia nigra and some brainstem structures. In contrast to brain-derived neurotrophic factor messenger RNA expression, brain-derived neurotrophic factor immunoreactivity was also found in the lateral septum, bed nucleus of the stria teminalis, medial preoptic nucleus, olivery pretectal nucleus, lateral paragigantocellular nucleus and the dorsal horn of the spinal cord. In normal adult rat brains, there was little or no staining in the CA1 region or the granule cell layer of the dentate gyrus of the hippocampus. However, kainate treatments greatly increased brain-derived neurotrophic factor immunoreactivity in the pyramidal cells of the CA1 region, as well as in the dentate gyrus, CA2 and CA3 hippocampal regions. We present evidence for both the subcellular localization and anterograde transport of endogenous brain-derived neurotrophic factor in the central nervous system. The detection of brain-derived neurotrophic factor protein in several discrete regions of the adult brain, and brain-derived neurotrophic factor's dramatic up-regulation following kainate treatment, strongly supports a role of brain-derived neurotrophic factor in the maintenance of adult neurons and synapses. Since several populations of neurons lost during neurodegenerative diseases synthesize brain-derived neurotrophic factor protein, modulation of brain-derived neurotrophic factor levels may be clinically beneficial. The antibody described in this paper will be helpful in determining more precisely the functional activities of brain-derived neurotrophic factor in the adult.  相似文献   

5.
An immunocytochemical approach with specific glial markers was used to investigate the temporal and spatial patterns of differentiation of ensheathing glia wrapping axon fascicles along the primary olfactory pathway of the rat during development. The two glial markers tested, the proteins S-100 and glial fibrillary acidic protein, are known to be expressed at different stages of maturation in glial cells. The S-100 protein was first weakly expressed in cells accompanying the olfactory axons at embryonic day 14 (E14), while a first faint glial fibrillary acidic protein staining was detected along the olfactory axons at E15 and along the vomeronasal nerves at E16. A strong S-100 immunoreactivity was already present from E16 onwards along the axon fascicles through their course in both the nasal mesenchyme and the subarachnoid space before entering the olfactory nerve layer of the olfactory bulb. A gradual increase in glial fibrillary acidic protein expression was observed along this part of the developing olfactory pathway from E16 up to E20, when an adult-like pattern of staining intensity was seen. By contrast, most of the ensheathing cells residing in the olfactory nerve layer exhibited some delay in their differentiation timing and also a noticeable delayed maturation. It was only from E20 onwards that a weak to moderate S-100 expression was detected in an increasing number of cells throughout this layer, and only few of them appeared weakly glial fibrillary acidic protein positive at postnatal days 1 and 5. The immunocytochemical data indicate that there is a proximodistal gradient of differentiation of ensheathing cells along the developing olfactory pathway. The prolonged immaturity of ensheathing cells in the olfactory nerve layer, which coincides with the formation of the first glomeruli, might facilitate the sorting out of olfactory axons leading to a radical reorganization of afferents before they end in specific glomeruli.  相似文献   

6.
7.
Stem cells in the central nervous system   总被引:6,自引:0,他引:6  
In the vertebrate central nervous system, multipotential cells have been identified in vitro and in vivo. Defined mitogens cause the proliferation of multipotential cells in vitro, the magnitude of which is sufficient to account for the number of cells in the brain. Factors that control the differentiation of fetal stem cells to neurons and glia have been defined in vitro, and multipotential cells with similar signaling logic can be cultured from the adult central nervous system. Transplanting cells to new sites emphasizes that neuroepithelial cells have the potential to integrate into many brain regions. These results focus attention on how information in external stimuli is translated into the number and types of differentiated cells in the brain. The development of therapies for the reconstruction of the diseased or injured brain will be guided by our understanding of the origin and stability of cell type in the central nervous system.  相似文献   

8.
Adriamycin elicited a stimulation of rat central nervous system lipid peroxidation, both in vivo and in vitro, as evidenced by the increase in the content of thiobarbituric acid reactants, which was found to be NADPH-dependent. The antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were seen to decrease on exposure to adriamycin (1 mg/kg for a period of 7 days), together with a significant decrement in the GSH/GSSG ratio, thus contributing to the oxidative insult to the tissue. The in vitro addition of GSH or vitamin E to brain homogenates offered protection against adriamycin-induced lipid peroxidation, suggesting that supplementation with these antioxidants could improve the therapeutic value of the drug.  相似文献   

9.
BACKGROUND: The aim of the present study was to analyze whether minor differences in recipient body surface area have any predictive value on renal allograft evolution. METHODS: For this study, we considered 236 pairs of recipients who received a kidney from the same donor at our center between March 1985 and December 1995. Pairs in whom at least one patient presented any of the following events were excluded: graft loss during the first year of follow-up, diabetes mellitus, noncompliance with treatment, chronic pyelonephritis, and recurrent or de novo glomerulonephritis. Recipients of each pair were classified as large or small according to their body surface area (BSA). The percentage difference of BSA in each pair was calculated, and two cohorts of pairs were defined: BSA difference < or = 10% (n=76 pairs) and BSA difference >10% (n=70 pairs). RESULTS: The large recipients of the cohort with a BSA difference >10% showed a higher incidence of posttransplant delayed graft function (22/70 vs. 12/70, P=0.075), hypertension at 1 year of follow-up (51/70 vs. 35/70, P=0.006), and a higher serum creatinine level at 1-year follow-up (173 vs. 142 micromol/L, P=0.003), whereas in the cohort with a BSA difference < or = 10%, posttransplant evolution in large and small recipients was not different. Multivariate analysis showed that recipient BSA was an independent predictor of delayed graft function, posttransplant hypertension, and serum creatinine at 1-year follow-up. CONCLUSIONS: Relatively small differences in recipient BSA influence renal allograft evolution. Consequently, our data support that recipient size should be taken into consideration for renal allograft allocation.  相似文献   

10.
The lack of axonal regeneration in the injured adult mammalian spinal cord leads to permanent functional impairment. To induce axonal regeneration in the transected adult rat spinal cord, we have used the axonal growth-promoting properties of adult olfactory bulb ensheathing glia (EG). Schwann cell (SC)-filled guidance channels were grafted to bridge both cord stumps, and suspensions of pure (98%) Hoechst-labeled EG were stereotaxically injected into the midline of both stumps, 1 mm from the edges of the channel. In EG-transplanted animals, numerous neurofilament-, GAP-43-, anti-calcitonin gene-related peptide (CGRP)-, and serotonin-immunoreactive fibers traversed the glial scars formed at both cord-graft interfaces. Supraspinal serotonergic axons crossed the transection gap through connective tissue bridges formed on the exterior of the channels, avoiding the channel interior. Strikingly, after crossing the distal glial scar, these fibers elongated in white and periaqueductal gray matter, reaching the farthest distance analyzed (1.5 cm). Tracer-labeled axons present in SC grafts were found to extend across the distal interface and up to 800 microm beyond in the distal cord. Long-distance regeneration (at least 2.5 cm) of injured ascending propriospinal axons was observed in the rostral spinal cord. Transplanted EG migrated longitudinally and laterally from the injection sites, reaching the farthest distance analyzed (1.5 cm). They moved through white matter tracts, gray matter, and glial scars, overcoming the inhibitory nature of the CNS environment, and invaded SC and connective tissue bridges and the dorsal and ventral roots adjacent to the transection site. Transplanted EG and regenerating axons were found in the same locations. Because EG seem to provide injured spinal axons with appropriate factors for long-distance elongation, these cells offer new possibilities for treatment of CNS conditions that require axonal regeneration.  相似文献   

11.
12.
Axons of the central nervous system in adult mammals do not regenerate spontaneously after axotomy. To understand whether the optic nerve of adult mammals loses the intrinsic capability to regenerate after injury, we have studied the capability of neurite regeneration of retinal explant from adult rat after optic nerve axotomy in vitro. After experimental blunt damage to the optic nerve of adult Wistar rat, the retinal explants from three days, one week, two weeks and three weeks after axotomy were put in tissue culture to observe the neurite growth after four days' incubation. The neurites were identified as retinal neuron origin by immunocytochemical staining using monoclonal antibody to neurofilament. The results demonstrate that retinal explants from adult rat after optic nerve damage have the capability of neurite regeneration; the capability is strongest in the group of one week after axotomy of optic nerve, but it decreases with passage of the time. On the other hand, the retinal explant from the control group of uninjured eye does not regenerate neurite in tissue culture. These results indicate that the retinal explant of adult rat has intrinsic capability to regenerate after optic nerve injury in vitro, and the capability of neurite regeneration decreases after one week post-trauma.  相似文献   

13.
A fundamental issue in neurobiology entails the study of the formation of neuronal connections and their potential to regenerate following injury. In recent years, an expanding number of gene families has been identified involved in different aspects of neurite outgrowth and regeneration. These include neurotrophic factors, cell-adhesion molecules, growth-associated proteins, cytoskeletal proteins and chemorepulsive proteins. Genetic manipulation technology (transgenic mice, knockout mice, viral vectors and antisense oligonucleotides) has been instrumental in defining the function of these neurite outgrowth-related proteins. The aim of this paper is to provide an overview of the above-mentioned four approaches to manipulate gene expression in vivo and to discuss the progress that has been made using this technology in helping to understand the molecular mechanisms that regulate neurite outgrowth. We will show that work with transgenic mice and knockout mice has contributed significantly to the dissection of the function of several proteins with a key role in neurite outgrowth and neuronal survival. Recently developed viral vectors for gene transfer in postmitotic neurons have opened up new avenues to analyze the function of a protein following local expression in naive adult rodents. The initial results with viral vector-based gene transfer provide a conceptual framework for further studies on genetic therapy of neuroregeneration and neurodegenerative diseases.  相似文献   

14.
The distribution of microperoxisomes was studied in areas of the central nervous system having high concentrations of catecholaminergic neurons and in areas lacking this neuron type, using the alkaline DAB cytochemical method for catalase. Substantial numbers of microperoxisomes are found in neurons in the locus coeruleus and in nucleus A1 of the medulla, as well as in the substantia nigra, whereas few catalase-reactive bodies are seen in neurons of the cerebrum and cerebellum. The number of catalase-reactive microperoxisomes per unit area in the catecholaminergic neurons of the CNS is comparable to the number seen previously in neurons of the peripheral cervical sympathetic ganglia. Some spinal cord neurons also contain reactive microperoxisomes. Catalase-reactive microperoxisomes are numerous in oligodendrocytes of all areas studied, and in ependymal cells bordering the third and fourth ventricles. Astrocytes contain few reactive structures in the cytoplasm near the nucleus, but they are readily found in astrocytic processes and end-feet.  相似文献   

15.
16.
Eighteen normal human eye-bank eyes (age: 18-81 years), five fetal eyes (16-24 weeks), 11 primary open-angle glaucoma (POAG) eyes (age: 76-89 years), and two Schnabel's cavernous optic atrophy eyes were examined using a biotinylated-hyaluronan binding protein to study the changes in the distribution of hyaluronic acid (HA) in the fetal, adult and glaucomatous optic nerve head. The vitreous body served as a positive control. Sections treated with Streptomyces hyaluronidase were used to confirm specificity. Monoclonal antibodies to myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) were used as additional controls. In fetal optic nerve, HA was localized in blood vessels, peripapillary sclera and the pial septae in the retrolaminar nerve. No staining was associated with axons. Staining for MBP was negative. In adults, HA was found surrounding the myelin sheaths in the retrolaminar nerve; staining decreased with age. In contrast, HA staining in myelinated peripheral nerves (e.g. ciliaries) remained unchanged with age. HA also was localized to the adventitia of arteries and veins throughout the posterior segment. Compared to age-matched normal eyes, HA staining was virtually absent around myelin sheaths of the retrolaminar nerve in POAG eyes. Similar changes were not found in other HA positive structures. In Schnabel's cavernous optic atrophy. HA was present in increased amount in the atrophic area, but virtually absent in the remaining retrolaminar nerve. HA staining was invariably positive in vitreous, and Streptomyces hyaluronidase treated sections were negative. In adults, staining of MBP was associated with the myelin sheath in the retrolaminar nerve. In contrast to HA, staining of MBP was unchanged with age and in POAG. In Schnabel's atrophy, MBP staining disappeared only in the atrophic area. HA in the retrolaminar optic nerve appears to be associate with the space-filling matrix between myelin sheaths. HA is not present in the axon bundles prior to myelination of the optic nerve. HA in the retrolaminar optic nerve appears to decrease with age and is further reduced in POAG; however, corresponding changes are not found in MBP or in peripheral nerves. Perhaps, decreased amounts of HA is related to a higher susceptibility to elevated intraocular pressure or to optic nerve atrophy. In Schnabel's cavernous optic atrophy, HA is present in increased amount only in the atrophic area while MBP is markedly decreased, suggesting in situ production of HA in areas of optic nerve atrophy.  相似文献   

17.
EAAC1 is a neuronal and epithelial high affinity glutamate transporter previously cloned from rabbit intestine. Here we report the isolation of EAAC 1 from rat brain* and its expression in the central nervous system based on in situ hybridization. Strong signals were detected in brain, spinal cord and retina. Expression of EAAC1 was particularly strong in pyramidal cells of the cerebral cortex, pyramidal cells of the hippocampus, mitral cells of the olfactory bulb, various thalamic nuclei and cells of certain retinal layers. EAAC1 was also expressed in non-glutamatergic neurons such as GABAergic cerebellar Purkinje cells and alpha-motor neurons of the spinal cord. We propose that EAAC1 is not only involved in the sequestration of glutamate at glutamatergic synapses and in protecting neurons from glutamate excitotoxicity, but also in the cellular metabolism involving glutamate.  相似文献   

18.
Previously, we have shown that the O4 antibody can be used to define and purify olfactory nerve ensheathing cells (ONECs) from the rat olfactory bulb by fluorescence-activated cell sorting. In this study, using a larger panel of neural markers, we demonstrate that this apparently homogeneous population of ONECs possess a heterogeneous antigenic profile both in vivo and in vitro. The antigenic profile of the sorted cells initially correlated with their antigenic profile in vivo, although expression of some of the markers was either lost or gained during time in culture. These changes were influenced by the culture conditions, with a greater loss of "typical" ONEC markers in serum-containing medium. In serum-free medium, which maintains the cells in a phenotype that closely resembles their in vivo counterparts, we were able to reclassify the ONECs into two cell types based on morphology and antigenic phenotype by using antibodies to polysialic acid (correlating with the embryonic form of N-CAM expression) and the low-affinity nerve growth factor receptor. A detailed immunocytochemical study of the developing olfactory system showed that these two cell types could also be detected along the entire length of the olfactory nerve and the outer layer of the olfactory bulb from Embryonic Day 14 to adulthood, suggesting they were not an in vitro artefact. To address the relationship between the two cell types we constructed a clonal ONEC cell line by retroviral infection with the temperature-sensitive mutant gene of the large T antigen. This clonal cell line contained cells that expressed antigenic phenotypes of both classes of ONECs, suggesting that both cell types are related and share a common lineage.  相似文献   

19.
Recent studies show that neuropeptide Y acts indirectly, via release of a neurotrophic factor(s) from the spinal cord, to increase the neurite outgrowth of dissociated adult rat dorsal root ganglion cells. This study examines further the neuropeptide Y-induced increase in neurite outgrowth. To characterize the factor(s) mediating the neuropeptide Y-induced increase in neurite outgrowth, we have examined whether antisera to either nerve growth factor or neurotrophin-3 influence the neuropeptide Y-induced increase in neurite outgrowth. Spinal cord slices were incubated with media alone or in combination with 10 nM neuropeptide Y for 2 h at 37 degrees C. The supernatant of spinal cord incubated with neuropeptide Y significantly enhanced the neurite outgrowth of normal dorsal root ganglion cells. Antiserum against nerve growth factor had no effect on the trophic actions of the supernatant. Antiserum against neurotrophin-3, however, significantly attenuated the increase in neurite outgrowth. Consistent with this finding, neurotrophin-3 also increased the percentage of cells with neurites. Transganglionic labelling of A-fibres with choleragenoid-horseradish peroxidase in animals treated intrathecally with neurotrophin-3 for 14 days via an osmotic pump showed that the area of choleragenoid-horseradish peroxidase label expanded into lamina II. In comparison, saline-treated animals had no label in lamina II. In addition, neurotrophin-3-treated animals also had a significant decrease in mechanical nociceptive threshold. The results suggest that neuropeptide Y acts via neurotrophin-3 to mediate an increase in neurite outgrowth of dorsal root ganglion cells. These results have important implications for the mechanisms underlying neuropathic pain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号