首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of ensheathing cells, a macroglial cell type with a unique presence in the olfactory system, in the outgrowth of olfactory receptor cell neurites was explored in vitro. Glial cell cultures harvested from both the olfactory bulb nerve layer and the hippocampus were established and immunocytochemically characterized. The expression of the p75 low-affinity nerve growth factor receptor by ensheathing cells was used to distinguish them from other macroglial subpopulations. Results indicated that ensheathing cell cultures were approximately 80% pure. Olfactory receptor cells were cocultured with ensheathing or hippocampal glial cells or were seeded on laminin or poly-L-lysine as controls. Olfactory receptor cells extended the longest primary neurites when cocultured with ensheathing cells. Neurite extension on hippocampal glia and laminin was less extensive than that observed on ensheathing cells but higher than that on poly-L-lysine. The neurite outgrowth-promoting effect of ensheathing cells was, at least in part, mediated by diffusible factors, because olfactory receptor cell neurite extension could also be facilitated when receptor cells were cultured in ensheathing cell-conditioned media. In contrast, cortical neurons extended neurites of equivalent lengths on ensheathing and hippocampal glia. The results suggest that ensheathing cells may release factors that support the continuous outgrowth of olfactory receptor cell axons and, therefore, the capacity of this pathway to recover from injury.  相似文献   

2.
Two glial cell types surround olfactory axons and glomeruli in the olfactory bulb (OB) and may influence synapse development and regeneration. OB astrocytes resemble type-1 astrocytes, and OB ensheathing cells resemble non-myelinating Schwann cells. We have produced clonal OB astrocyte and ensheathing cell lines from rat neonatal and adult OB cultures by SV40 large T antigen transduction. These cell lines have been characterized by morphology, growth characteristics, immunophenotype, and ability to promote neurite outgrowth in vitro. Neonatal and adult ensheathing cell lines were found to support higher neurite outgrowth than OB astrocyte lines. Neonatal OB astrocyte lines were of two types, high and low outgrowth support. The low support astrocyte lines express J1 and a chondroitin sulfate-containing proteoglycan as do astrocytes encircling the neonatal glomeruli in vivo. The adult OB astrocyte cell lines supported lower levels of outgrowth than adult ensheathing cell lines. These results are consistent with a positive role for ensheathing cells in OB synapse regeneration, in vivo. Further, based on our results, we hypothesize that ensheathing cells and high-outgrowth astrocytes facilitate axon growth in vivo, while low outgrowth astrocytes inhibit axon growth and may facilitate glomerulus formation.  相似文献   

3.
The ability to purify and recombine populations of peripheral neurons, Schwann cells and fibroblasts in tissue culture has enabled us to examine the contribution of fibroblasts to Schwann cell basal lamina assembly and ensheathment of unmyelinated rat superior cervical ganglion neurites in vitro. Purified perinatal superior cervical ganglion neurons were grown in culture either with Schwann cells or with Schwann cells plus fibroblasts derived from either superior cervical ganglion capsule or cranial periosteum. The cultures were maintained for 2-8 weeks on a collagen substratum in a medium known to promote Schwann cell differentiation (myelin, basal lamina formation) in the presence of dorsal root ganglion neurons. The extent of Schwann cell differentiation (ensheathment, basal lamina formation) in the presence of superior cervical ganglion neurons was evaluated in this study using electron microscopy. In superior cervical ganglion neuron plus Schwann cell cultures (without fibroblasts), Schwann cells achieved only a moderate degree of ensheathment; also, Schwann cell basal lamina was discontinuous and extracellular collagen fibrils were sparse. Although only discontinuous basal lamina was demonstrable by electron microscopy in these cultures, surprisingly, Schwann cell/neurite fascicles were uniformly immunostained for laminin, type IV collagen, and heparan sulfate proteoglycan. The addition of fibroblasts to superior cervical ganglion neuron plus Schwann cell cultures increased the deposition of basal lamina around the Schwann cell/neurite units, the number of collagen fibrils, and the extent of neurite ensheathment. We propose that the presence of basal lamina increases the Schwann cell's ability to ensheathe superior cervical ganglion neurites, possibly through an augmentation of specific extracellular matrix components or by increasing in some way the capacity of these components to become organized into basal lamina. We conclude that, unlike dorsal root ganglion neurons, superior cervical ganglion neurons are unable to stimulate full Schwann cell extracellular matrix expression with the result that these Schwann cells require the extraneuronal influence of fibroblasts to deposit basal lamina and attain their mature phenotype in culture.  相似文献   

4.
We have studied the interactions of adrenal chromaffin and Schwann cells in a coculture system to observe whether denervated Schwann cells induce and support chromaffin cell differentiation in a manner analogous to nerve growth factor (NGF). Schwann cells induce both the accumulation of intense clumps of cocultured chromaffin cells on their surfaces and intense neurite outgrowth. This interaction is not blocked by antibodies to NGF or laminin. Conditioned medium from Schwann cell cultures fosters neurite outgrowth in chromaffin cells in a fashion qualitatively similar to NGF. Our data indicate that denervated Schwann cells exert a profound aggregating and differentiating effect upon chromaffin cells, inducing the expression of a neuronal phenotype via a predominantly NGF-independent mechanism.  相似文献   

5.
We produced and characterized two monoclonal antibodies, termed 1.9.E and 4.11.C, that specifically recognize olfactory bulb ensheathing glia. Both antibodies were generated using the olfactory nerve layer (ONL) of newborn rat olfactory bulbs (P0, P1) as immunogens. The specificity of these antibodies was tested by immunofluorescence techniques on tissue sections and cultures of adult and neonatal rat olfactory bulbs, and by Western blot analysis. 1.9.E labeled the ONL and glomerular layer of the olfactory bulb (OB) of adult rats. In newborn rats, 1.9.E immunostained ensheathing cells from the ONL and peripheral olfactory fascicles. Furthermore, 1.9.E reacted with some processes of the radial glia in the periventricular germinal layer of the newborn rat. Although 4.11.C also specifically labeled ensheathing cells in the adult OB, it did not stain any cell type in the ONL of newborn rats. The lack of double labeling with either 1.9.E or 4.11.C and anti-olfactory marker protein (OMP) antibody, a specific marker for olfactory axons, indicated that none of the monoclonals recognized olfactory axons. Double immunostaining of adult OB cultures with 1.9.E or 4.11.C and anti-p75-nerve growth factor receptor revealed that both antibodies specifically recognized ensheathing glia in those cultures. Filaments were strongly labeled throughout the entire cytoplasm of ensheathing cells, suggesting that 1.9.E and 4.11.C immunoreacted with ensheathing glia cytoskeleton. 4.11.C stained a few Schwann cells in adult sciatic nerve sections. Moreover, 4.11.C immunostained cortical astrocyte cultures from newborn rats (P1). In Western blot analysis both antibodies recognized a major component, migrating with an apparent molecular weight of 60 kDa, from olfactory nerve and glomerular layer (ONGL) extracts of adult and neonatal rats. The pattern of immunoreactivity of 1.9.E and 4.11.C antibodies suggest that both antibodies are specific markers for olfactory ensheathing glia in the adult rat central nervous system (CNS).  相似文献   

6.
Although purinergic compounds are widely involved in the intra- and intercellular communication of the nervous system, little is known of their involvement in the growth and regeneration of neuronal connections. In dissociated cultures, the addition of adenosine or guanosine in the low micromolar range induced goldfish retinal ganglion cells to extend lengthy neurites and express the growth-associated protein GAP-43. These effects were highly specific and did not reflect conversion of the nucleosides to their nucleotide derivatives; pyrimidines, purine nucleotides, and membrane-permeable, nonhydrolyzable cyclic nucleotide analogs were all inactive. The activity of adenosine required its conversion to inosine, because inhibitors of adenosine deaminase rendered adenosine inactive. Exogenously applied inosine and guanosine act directly upon an intracellular target, which may coincide with a kinase described in PC12 cells. In support of this, the effects of the purine nucleosides were blocked with purine transport inhibitors and were inhibited competitively with the purine analog 6-thioguanine (6-TG). In PC12 cells, others have shown that 6-TG blocks nerve growth factor-induced neurite outgrowth and selectively inhibits the activity of protein kinase N, a partially characterized, nerve growth factor-inducible serine-threonine kinase. In both goldfish and rat retinal ganglion cells, 6-TG completely blocked outgrowth induced by other growth factors, and this inhibition was reversed with inosine. These results suggest that axon outgrowth in central nervous system neurons critically involves an intracellular purine-sensitive mechanism.  相似文献   

7.
Embryonic retinal neurons lose the ability to extend neurites on laminin-1 (LN-1) with increasing developmental age yet still do so on other laminin isoforms. However, after treatment of LN-1 with antibodies to "short-arm" regions or removal of the short arms proteolytically, LN-1 supports attachment and extension of neurites even by late embryonic retinal neurons. We have mapped a domain for antibody-mediated "activation" of LN-1 to the N-terminal end of the alpha1 chain. Furthermore, we show that the primary receptors used in the retinal neuron response to "activated" LN-1 are integrins alpha3 beta1 and alpha6 beta1; these are the same receptors used by these neurons for outgrowth on other LN isoforms. Interestingly, alpha3 beta1 is preferentially involved in neurite outgrowth, whereas alpha6beta1 preferentially mediates attachment and spreading. However, in cultures from alpha3 integrin-deficient mice, alpha6 beta1 mediates retinal ganglion cell neurite outgrowth and compensates for the absence of alpha3 beta1. Finally, we show that key features of the retinal neuron response to LN-1 also characterize neurons of the hippocampus, thalamus, and cerebral cortex; these include poor response to untreated LN-1, extensive neurite outgrowth on antibody-activated LN-1 or on fragment E8, and dependence of this response on integrin alpha6 beta1 and at least one other long arm-binding beta1 integrin. These data suggest that regulation of LN-1 function via the process of activation could have important consequences for axonal regeneration. Curiously, the data also imply that the mechanism of laminin activation involves enhanced function at sites that cannot be considered cryptic.  相似文献   

8.
Mechanisms regulating axon growth in the peripheral nervous system have been studied by means of an in vitro bioassay, the tissue section culture, in which regenerating neurons are grown on substrata made up of tissue sections. Sections from intact and degenerated sciatic nerves proved to be different in their ability to support neurite outgrowth of embryonic chick sensory neurons from both qualitative and quantitative points of view. On denervated nerve sections, the total length of neurites elaborated per neuron was almost twice that found on intact nerve sections. In addition, confocal microscopy revealed a striking difference between intact and denervated nerve substrata: on denervated nerve sections, neurites grew inside the internal structures of endoneurial Schwann cell tubes, within the underlying tissue sections, whereas on intact nerve sections neurites extended along endoneurial basal laminae but never entered Schwann cell tubes. Perturbation experiments were used to analyze some of the molecular determinants that control neurite outgrowth in this system. Antibodies directed against the beta1-integrin subunit inhibited neurite extension on both normal and degenerated rat sciatic nerve tissue. Strikingly, however, differential inhibition was observed using antibodies directed against extracellular matrix molecules. Anti-laminin-2 (merosin) antibodies drastically reduced both the percentage of growing neurons and the total length of neurites on denervated nerve sections, but they did not modify these parameters on sections of normal nerve. Taken together, these results suggest that laminin-2/merosin promotes neurite outgrowth in peripheral nerve environments but only after Wallerian degeneration, which is when axons are allowed to extend within endoneurial tubes.  相似文献   

9.
Recent studies show that neuropeptide Y acts indirectly, via release of a neurotrophic factor(s) from the spinal cord, to increase the neurite outgrowth of dissociated adult rat dorsal root ganglion cells. This study examines further the neuropeptide Y-induced increase in neurite outgrowth. To characterize the factor(s) mediating the neuropeptide Y-induced increase in neurite outgrowth, we have examined whether antisera to either nerve growth factor or neurotrophin-3 influence the neuropeptide Y-induced increase in neurite outgrowth. Spinal cord slices were incubated with media alone or in combination with 10 nM neuropeptide Y for 2 h at 37 degrees C. The supernatant of spinal cord incubated with neuropeptide Y significantly enhanced the neurite outgrowth of normal dorsal root ganglion cells. Antiserum against nerve growth factor had no effect on the trophic actions of the supernatant. Antiserum against neurotrophin-3, however, significantly attenuated the increase in neurite outgrowth. Consistent with this finding, neurotrophin-3 also increased the percentage of cells with neurites. Transganglionic labelling of A-fibres with choleragenoid-horseradish peroxidase in animals treated intrathecally with neurotrophin-3 for 14 days via an osmotic pump showed that the area of choleragenoid-horseradish peroxidase label expanded into lamina II. In comparison, saline-treated animals had no label in lamina II. In addition, neurotrophin-3-treated animals also had a significant decrease in mechanical nociceptive threshold. The results suggest that neuropeptide Y acts via neurotrophin-3 to mediate an increase in neurite outgrowth of dorsal root ganglion cells. These results have important implications for the mechanisms underlying neuropathic pain.  相似文献   

10.
Tenascin-R is a multidomain molecule of the extracellular matrix in the CNS with neurite outgrowth inhibitory functions. Despite the fact that in amphibians spontaneous axonal regeneration of the optic nerve occurs, we show here that the molecule appears concomitantly with myelination during metamorphosis and is present in the adult optic nerve of the salamander Pleurodeles waltl by immunoblots and immunohistochemistry. In vitro, adult retinal ganglion cell axons were not able to grow from retinal explants on a tenascin-R substrate or to cross a sharp substrate border of tenascin-R in the presence of laminin, indicating that tenascin-R inhibits regrowth of retinal ganglion cell axons. After an optic nerve crush, immunoreactivity for tenascin-R was reduced to undetectable levels within 8 d. Immunoreactivity for the myelin-associated glycoprotein (MAG) was also diminished by that time. Myelin was removed by phagocytosing cells at 8-14 d after the lesion, as demonstrated by electron microscopy. Tenascin-R immunoreactivity was again detectable at 6 months after the lesion, correlated with remyelination as indicated by MAG immunohistochemistry. Regenerating axons began to repopulate the distal lesioned nerve at 9 d after a crush and grew in close contact with putative astrocytic processes in the periphery of the nerve, close to the pia, as demonstrated by anterograde tracing. Thus, the onset of axonal regrowth over the lesion site was correlated with the removal of inhibitory molecules in the optic nerve, which may be necessary for successful axonal regeneration in the CNS of amphibians.  相似文献   

11.
The sulfur amino acid taurine and the indoleamine serotonin increases and decreases, respectively, the outgrowth from goldfish retinal explants. Taurine seems to be acting, at least partially, through an increase in calcium fluxes, and the serotonin-inhibiting effect appears to be mediated by serotonin1A receptors and cAMP. Isolated cells of postcrush goldfish retina and of retina from 5-day-old rats were cultured in the presence of taurine or serotonin. In the goldfish, the classical morphology of postcrush ganglion cells was observed. An antibody against the glycoprotein Thy-1 labelled three types of cells in the cultures of goldfish retina. The number of cells outgrowing and the length of the main neurite was measured at 5 days in culture in both species. The number of cells presenting neurites was increased in the goldfish retina by the addition of taurine, and decreased by serotonin. However, the length of the neurites was unaffected by the addition of the modulators. In the rat, only a slight decrease in the number of cells outgrowing was observed in the presence of serotonin. The incorporation of [3H]thymidine was not modified after 5 days in culture in the presence of taurine or serotonin, either in the goldfish or in the rat retina. The antibody Thy 1.1 can label retinal cells of the goldfish in vitro, one of them being ganglion cells. The trophic effect exerted by taurine in the postcrush goldfish retina needs the integrity of the tissue favoring the interaction of cells and factors, because outgrowth increases in retinal explants, but not in isolated cells.  相似文献   

12.
An in vitro model was established to investigate factors underlying the sensory hyperinnervation of neonatal rat skin wounds that has been observed in vivo (Reynolds and Fitzgerald, J. Comp. Neurol. 358 (1995) 487-489). Explants of normal and wounded rat dorsal foot skin were co-cultured with explants of embryonic chick or newborn rat dorsal root ganglia for 24 h and the number of sensory neurites counted. Explants of skin surrounding a wound made at birth were taken 3 (P3) or 10 (P10) days later and compared with normal skin of the same age. In addition, explants were taken from adult skin wounded 3 and 10 days earlier. At P3, normal skin induced weak neurite outgrowth (mean 13.1 +/- 2.1 neurites per ganglion explant) but skin that had been wounded 3 days earlier, at birth, induced three times more neurite outgrowth (37.8 +/- 3.3). Ten days after wounding at birth, neurite outgrowth was still substantial (40.9 +/- 3.3) although at that age (P10), even normal skin stimulates substantial growth (37.4 +/- 2.9). Normal adult skin also stimulated neurite outgrowth (28.7 +/- 0.45) but this was not increased by wounding 3 or 10 days earlier, and this was enhanced 3 days but not 10 days after wounding. Anti-NGF (nerve growth factor) added to the culture medium blocked the constitutive neurite stimulating activity from normal P10 and adult skin but was ineffective in blocking the neurite stimulating activity produced by neonatal wounding. It is concluded that skin wounding at birth results in release of one or more sensory neurotrophic factors that stimulate rat and chick dorsal root ganglia neurite outgrowth for at least 10 days, but which do not include NGF.  相似文献   

13.
We have developed retinal culture system of adult mammals to investigate neural regeneration from adult retinal ganglion cells (RGC). In this culture system, neurites were regenerated from RGCs of adult retinal explants. Investigation of neurotrophic effects on the neural regeneration showed that some interleukins and neurotrophins enhanced neurite regeneration from adult rat RGCs. We also found that the adult human retina had the ability of neural regeneration and that neurotrophins enhanced this ability. A novel neurotrophic factor secreted by adult rat hepatocytes also enhanced neurite regeneration not only in adult mice but also in aged RGCs. This result indicated the novel hepatocyte secreted factor is an activator which enhances neural regeneration of the aged retina. We concluded that even adult aged RGCs had the ability of axonal regeneration after injury and that neurotrophic factors might enhanced these abilities. Therefore neurotrophic factors might have practicable applications in drug treatments for intractable disease of the neural retina and optic nerve. Future progress of neuroscience is expected to rescue the retina from various diseases, and to render possible the transplantation of the retina and optic nerve.  相似文献   

14.
An in vitro slice culture was established for investigating olfactory neural development. The olfactory epithelium was dissected from embryonic day 13 rats; 400 microns slices were cultured for 5 days in serum-free medium on Millicell-CM membranes coated with different substrates. The slices were grown in the absence of their appropriate target, the olfactory bulb, or CNS derived glia. The cultures mimic many features of in vivo development. Cells in the olfactory epithelium slices differentiate into neurons that express olfactory marker protein (OMP). OMP-positive cells have the characteristic morphology of olfactory receptor neurons: a short dendrite and a single thin axon. The slices support robust axon outgrowth. In single-label experiments, many axons expressed neural specific tubulin, growth-associated protein 43 and OMP. Axons appeared to grow equally well on membranes coated with type I rat tail collagen, laminin or fibronectin. The cultures exhibit organotypic polarity with an apical side rich in olfactory neurons and a basal side supporting axon outgrowth. Numerous cells migrate out of the slices, of which a small minority was identified as neurons based on the expression of neural specific tubulin and HuD, a nuclear antigen, expressed exclusively in differentiated neurons. Most of the migrating cells, however, were positive for glial fibrillary acidic protein and S-100, indicating that they are differentiated glia. A subpopulation of these glial cells also expressed low-affinity nerve growth factor receptors, indicating that they are olfactory Schwann cells. Both migrating neurons and glia were frequently associated with axons growing out of the slice. In some cases, axons extended in advance of migrating cells. This suggests that olfactory receptor neurons in organotypic cultures require neither a pre-established glial/neuronal cellular terrain nor any target tissue for successful axon outgrowth. Organotypic olfactory epithelial slice cultures may be useful for investigating cellular and molecular mechanisms that regulate early olfactory development and function.  相似文献   

15.
Embryonic, human spinal ganglion explants were plated at 5-12 weeks postconceptional age and cultured for 5-50 days on a semisynthetic substrate in a serum-containing culture medium without addition of antibiotics or preconditioned medium. The growth pattern in vitro was found to be age dependent. Five- to 6-week ganglia showed a characteristic semicircular growth pattern with bidirectional extension of neurites on top of a monolayer of supportive cells. Explanted 9- to 10-week ganglia showed an extensive, multidirectional neurite outgrowth with less pronounced proliferation of nonneuronal cells. Neurite extension, fasciculation, cell migration and morphology were studied immunohistochemically with antibodies to neurofilament (NF), S-100, and the Thy-1 glycoprotein. Both NF and S-100 were expressed at 5 weeks gestational age in ganglionic neurons and in proliferating Schwann cells in contact with axonal processes, respectively. NF was homogeneously distributed in both cell somata and neurites, whereas S-100 immunoreactivity showed an intense nuclear and a weaker cytoplasmic distribution in spindle-shaped, bipolar Schwann cells. This staining pattern was conserved during differentiation in long-term culture. Thy-1 was expressed on ganglionic neurites forming fascicles by the third week in culture. However, Thy-1 was never expressed until the total age of 10 weeks. In addition, Thy-1 was found on fibroblasts from the first week in culture. The distribution of Thy-1 on the cytoplasmic membrane was similar in both cell types, showing a coarsely granulated membrane staining. The temporal as well as the spatial expression of differentiation antigens in tissue sections of early embryonic spinal cord and spinal ganglia were very similar to what was observed in vitro.  相似文献   

16.
Axons of the central nervous system in adult mammals do not regenerate spontaneously after axotomy. To understand whether the optic nerve of adult mammals loses the intrinsic capability to regenerate after injury, we have studied the capability of neurite regeneration of retinal explant from adult rat after optic nerve axotomy in vitro. After experimental blunt damage to the optic nerve of adult Wistar rat, the retinal explants from three days, one week, two weeks and three weeks after axotomy were put in tissue culture to observe the neurite growth after four days' incubation. The neurites were identified as retinal neuron origin by immunocytochemical staining using monoclonal antibody to neurofilament. The results demonstrate that retinal explants from adult rat after optic nerve damage have the capability of neurite regeneration; the capability is strongest in the group of one week after axotomy of optic nerve, but it decreases with passage of the time. On the other hand, the retinal explant from the control group of uninjured eye does not regenerate neurite in tissue culture. These results indicate that the retinal explant of adult rat has intrinsic capability to regenerate after optic nerve injury in vitro, and the capability of neurite regeneration decreases after one week post-trauma.  相似文献   

17.
Retinal ganglion cell (RGC) axons in lizards (reptiles) were found to regenerate after optic nerve injury. To determine whether regeneration occurs because the visual pathway has growth-supporting glia cells or whether RGC axons regrow despite the presence of neurite growth-inhibitory components, the substrate properties of lizard optic nerve myelin and of oligodendrocytes were analyzed in vitro, using rat dorsal root ganglion (DRG) neurons. In addition, the response of lizard RGC axons upon contact with rat and reptilian oligodendrocytes or with myelin proteins from the mammalian central nervous system (CNS) was monitored. Lizard optic nerve myelin inhibited extension of rat DRG neurites, and lizard oligodendrocytes elicited DRG growth cone collapse. Both effects were partially reversed by antibody IN-1 against mammalian 35/250 kD neurite growth inhibitors, and IN-1 stained myelinated fiber tracts in the lizard CNS. However, lizard RGC growth cones grew freely across oligodendrocytes from the rat and the reptilian CNS. Mammalian CNS myelin proteins reconstituted into liposomes and added to elongating lizard RGC axons caused at most a transient collapse reaction. Growth cones always recovered within an hour and regrew. Thus, lizard CNS myelin and oligodendrocytes possess nonpermissive substrate properties for DRG neurons--like corresponding structures and cells in the mammalian CNS, including mammalian-like neurite growth inhibitors. Lizard RGC axons, however, appear to be far less sensitive to these inhibitory substrate components and therefore may be able to regenerate through the visual pathway despite the presence of myelin and oligodendrocytes that block growth of DRG neurites.  相似文献   

18.
The functional significance of microtubule-associated protein 1B (MAP1B) phosphorylation during neuronal differentiation is unknown. In the present study we examined the hypothesis that the phosphorylation of MAP1B is required for neurite outgrowth. We reasoned that if MAP1B phosphorylation was important for neurite outgrowth then the intracellular distribution of phosphorylated MAP1B might exist as a discrete subset of the pattern for total MAP1B. We utilized a monoclonal antibody (mAb 7-1.1) that specifically recognizes a phosphorylated epitope on MAP1B and a polyclonal antiserum that recognizes all MAP1B protein to compare the distributions of phosphorylated and total MAP1B during neurite outgrowth. Phosphorylated MAP1B progressively accumulated in both the soluble and cytoskeletal fractions of differentiating cells. Similar proportions of total and phosphorylated MAP1B were associated with the cytoskeletons of differentiating PC12 cells. Within individual cells, phosphorylated MAP1B, in comparison with total MAP1B, was not limited to a particular intracellular domain. Phosphorylated MAP1B was present in both neurites and cell bodies. It was associated with fibrillar microtubules in neurites and growth cones, but it appeared nonfibrillar within cell bodies. In some cells that differentiated rapidly, there was little phosphorylated MAP1B in the early neurites despite the presence of extensive microtubules. In addition, although phosphorylated MAP1B increased in populations of mature PC12 cell cultures, increases in phosphorylated MAP1B did not always correlate with neurite outgrowth in individual cells. These results suggest that the phosphorylated isoform of MAP1B recognized by mAb 7-1.1 may not be required for neurite outgrowth.  相似文献   

19.
Terrestrial snails have a highly developed sense of olfaction. Because the procerebrum has a large number of cells and is located at the entry site of the olfactory nerve into the brain, the structure is thought to have a significant role in the processing of olfactory stimuli. The morphology of the procerebral neurons in the snail Helix aspersa was investigated through intracellular injections of biocytin. No formal categorization of neuronal types was possible, but some cells were seen to have neurites entirely intrinsic to the procerebrum, whereas others had both intrinsic and extrinsic arborizations, and still others had only extrinsic arborizations. These interneurons were previously thought to have arborizations restricted to the procerebral lobe. We demonstrated the extent of the neurite projections outside of the procerebral lobe by making focal injections of biocytin or Neurobiotin into various regions of the cerebral ganglion. This technique revealed subsets of cells that send neurites not only in the ipsilateral ganglion but also through the cerebral commissure into the contralateral cerebral ganglion. Our results demonstrate not only that the procerebral cell population is heterogeneous but also that the procerebrum interacts more directly with the rest of the central nervous system than was formerly believed.  相似文献   

20.
Binding of the stable melanocortin(4-9) analogue, Org2766 [Met(O2)-Glu-His-Phe-D-Lys-Phe] to cultured rat sciatic nerve Schwann cells was demonstrated using a biotinylated derivative in semiquantitative histochemical and CELISA assays. Org2766 bound to Schwann cells, but not to fibroblasts, and was displaced maximally by unlabeled Org2766, alpha-MSH and ACTH(1-24). Displacement of Org2766 from the binding sites was considerably reduced by N- and C-truncation of the peptide. Specific binding of Org2766 was also demonstrated in the immortal rat Schwann cell line SCL4.1/F7 and was more pronounced in cells displaying a differentiated morphology. Org2766 and alpha-MSH increased cyclic AMP content of Schwann cells but neither stimulated DNA synthesis when applied alone. However, in the presence of a priming (subthreshold) concentration of the mitogen, cholera toxin, Org2766 and alpha-MSH caused a delayed increase in DNA synthesis. Org2766 did not modulate the expression of several differentiation-related Schwann cell markers. However, Org2766 increased immunoreactivity for p75 low-affinity NGF receptor on Schwann cells and evoked the release of neurotrophic factor(s) that synergized with NGF in stimulating neurite outgrowth in rat DRG neurons. The results indicate that Schwann cells are a primary target for the action of Org2766 and provide evidence for an indirect mechanism by which melanocortins might stimulate neurite sprouting in regenerating peripheral nerve axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号