首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
In machining, coolants improve machinability, increase productivity by reducing tool wear and extend tool life. However, due to ecological and human health problems, manufacturing industries are now being forced to implement strategies to reduce the amount of cutting fluids used in their production lines. A trend that has emerged to solve these problems is machining without fluid – a method called dry machining – which has been made possible due to technological innovations. This paper presents an experimental investigation of the influence of tool geometry (radial rake angle and nose radius) and cutting conditions (cutting speed and feed rate) on machining performance in dry milling with four fluted solid TiAlN-coated carbide end mill cutters based on Taguchi’s experimental design method. The mathematical model, in terms of machining parameters, was developed for surface roughness prediction using response surface methodology. The optimization is then carried out with genetic algorithms using the surface roughness model developed and validated in this work. This methodology helps to determine the best possible tool geometry and cutting conditions for dry milling.  相似文献   

2.
The results of mathematical modeling and the experimental investigation on the machinability of aluminium (Al6061) silicon carbide particulate (SiCp) metal matrix composite (MMC) during end milling process is analyzed. The machining was difficult to cut the material because of its hardness and wear resistance due to its abrasive nature of reinforcement element. The influence of machining parameters such as spindle speed, feed rate, depth of cut and nose radius on the cutting force has been investigated. The influence of the length of machining on the tool wear and the machining parameters on the surface finish criteria have been determined through the response surface methodology (RSM) prediction model. The prediction model is also used to determine the combined effect of machining parameters on the cutting force, tool wear and surface roughness. The results of the model were compared with the experimental results and found to be good agreement with them. The results of prediction model help in the selection of process parameters to reduce the cutting force, tool wear and surface roughness, which ensures quality of milling processes.  相似文献   

3.
Optimization of cutting parameters is valuable in terms of providing high precision and efficient machining. Optimization of machining parameters for milling is an important step to minimize the machining time and cutting force, increase productivity and tool life and obtain better surface finish. In this work a mathematical model has been developed based on both the material behavior and the machine dynamics to determine cutting force for milling operations. The system used for optimization is based on powerful artificial intelligence called genetic algorithms (GA). The machining time is considered as the objective function and constraints are tool life, limits of feed rate, depth of cut, cutting speed, surface roughness, cutting force and amplitude of vibrations while maintaining a constant material removal rate. The result of the work shows how a complex optimization problem is handled by a genetic algorithm and converges very quickly. Experimental end milling tests have been performed on mild steel to measure surface roughness, cutting force using milling tool dynamometer and vibration using a FFT (fast Fourier transform) analyzer for the optimized cutting parameters in a Universal milling machine using an HSS cutter. From the estimated surface roughness value of 0.71 μm, the optimal cutting parameters that have given a maximum material removal rate of 6.0×103 mm3/min with less amplitude of vibration at the work piece support 1.66 μm maximum displacement. The good agreement between the GA cutting forces and measured cutting forces clearly demonstrates the accuracy and effectiveness of the model presented and program developed. The obtained results indicate that the optimized parameters are capable of machining the work piece more efficiently with better surface finish.  相似文献   

4.
The aim of this study is to develop an integrated study of surface roughness to model and optimize the cutting parameters when end milling of AISI 1040 steel material with TiAlN solid carbide tools under wet condition. A multiple regression analysis using analysis of variance is conducted to determine the performance of experimental measurements and to show the effect of four cutting parameters on the surface roughness. Artificial neural network (ANN) based on Back-propagation (BP) learning algorithm is used to construct the surface roughness model exploiting a full factorial design of experiments. Genetic algorithm (GA) supported with the tested ANN is utilized to determine the best combinations of cutting parameters providing roughness to the lower surface through optimization process. GA improves the surface roughness value from 0.67 to 0.59 μm with approximately 12% gain. Then, machining time has also decreased from 1.282 to 1.0316 min by about 20% reduction based on the cutting parameters before and after optimization process using the analytical formulas. The final measurement experiment has been performed to verify surface roughness value resulted from GA with that of the material surface by 3.278% error. From these results, it can be easily realized that the developed study is reliable and suitable for solving the other problems encountered in metal cutting operations as the same as surface roughness.  相似文献   

5.
The evolving concept of minimum quantity of lubrication (MQL) in machining is considered as one of the solutions to reduce the amount of lubricant to address the environmental, economical and ecological issues. This paper investigates the influence of cutting speed, feed rate and different amount of MQL on machining performance during turning of brass using K10 cemented carbide tool. The experiments have been planned as per Taguchi's orthogonal array and the second order surface roughness model in terms of machining parameters was developed using response surface methodology (RSM). The parametric analysis has been carried out to analyze the interaction effects of process parameters on surface roughness. The optimization is then carried out with genetic algorithms (GA) using surface roughness model for the selection of optimal MQL and cutting conditions. The GA program gives the minimum values of surface roughness and the corresponding optimal machining parameters.  相似文献   

6.
Industrial applications of the micro milling process require sufficient experimental data from various micro tools. Research has been carried out on micro milling of various engineering materials in the past two decades. However, there is no report in the literature on micro milling of graphite. This paper presents an experimental investigation on micro machinability of micro milling of moulded fine-grained graphite. Full immersion slot milling was conducted using diamond-coated, TiAlN-coated and uncoated tungsten carbide micro end mills with a uniform tool diameter of 0.5 mm. The experiments were carried out on a standard industrial precision machining centre with a high-speed micro machining spindle. Design of experiments (DoE) techniques were applied to design and analysis of the machining process. Surface roughness, surface topography and burrs formation under varying machining conditions were characterized using white light interferometry, SEM and a precision surface profiler. Influence of variation of cutting parameters including cutting speeds, feedrate and axial depth of cut on surface roughness and surface damage was analysed using ANOVA method. The experimental results show that feedrate has the most significant influence on surface roughness for all types of tools, and diamond tools are not sensitive to cutting speed and depth of cut. Surface damage and burrs analysis show that the primary material removal mode is still brittle fracture or partial ductile in the experimental cutting conditions. 3D intricate micro EDM electrodes were fabricated with good dimensional accuracy and surface finishes using optimized machining conditions to demonstrate that micro milling is an ideal process for graphite machining.  相似文献   

7.
Influence of machining parameters, viz., spindle speed, depth of cut and feed rate, on the quality of surface produced in CNC end milling is investigated. In the present study, experiments are conducted for three different workpiece materials to see the effect of workpiece material variation in this respect. Five roughness parameters, viz., centre line average roughness, root mean square roughness, skewness, kurtosis and mean line peak spacing have been considered. The second-order mathematical models, in terms of the machining parameters, have been developed for each of these five roughness parameters prediction using response surface method on the basis of experimental results. The roughness models as well as the significance of the machining parameters have been validated with analysis of variance. It is found that the response surface models for different roughness parameters are specific to workpiece materials. An attempt has also been made to obtain optimum cutting conditions with respect to each of the five roughness parameters considered in the present study with the help of response optimization technique.  相似文献   

8.
Built-up edge (BUE) is generally known to cause surface finish problems in the micro milling process. The loose particles from the BUE may be deposited on the machined surface, causing surface roughness to increase. On the other hand, a stable BUE formation may protect the tool from rapid tool wear, which hinders the productivity of the micro milling process. Despite its common presence in practice, the influence of BUE on the process outputs of micro milling has not been studied in detail. This paper investigates the relationship between BUE formation and process outputs in micro milling of titanium alloy Ti6Al4V using an experimental approach. Micro end mills used in this study are fabricated to have a single straight edge using wire electrical discharge machining. An initial experimental effort was conducted to study the relationship between micro cutting tool geometry, surface roughness, and micro milling process forces and hence conditions to form stable BUE on the tool tip have been identified. The influence of micro milling process conditions on BUE size, and their combined effect on forces, surface roughness, and burr formation is investigated. Long-term micro milling experiment was performed to observe the protective effect of BUE on tool life. The results show that tailored micro cutting tools having stable BUE can be designed to machine titanium alloys with long tool life with acceptable surface quality.  相似文献   

9.
Surface roughness prediction studies in end milling operations are usually based on three main parameters composed of cutting speed, feed rate and depth of cut. The stepover ratio is usually neglected without investigating it. The aim of this study is to discover the role of the stepover ratio in surface roughness prediction studies in flat end milling operations. In realising this, machining experiments are performed under various cutting conditions by using sample specimens. The surface roughnesses of these specimens are measured. Two ANN structures were constructed. First of them was arranged with considering, and the second without considering the stepover ratio. ANN structures were trained and tested by using the measured data for predicting the surface roughness. Average RMS error of the ANN model considering stepover ratio is 0.04 and without considering stepover ratio is 0.26. The first model proved capable of prediction of average surface roughness (Ra) with a good accuracy and the second model revealed remarkable deviations from the experimental values.  相似文献   

10.
Surface roughness is a technical requirement for machined products and one of the main product quality specifications. In order to avoid the costly trial-and-error process in machining parameters determination, the Gaussian process regression (GPR) was proposed for modeling and predicting the surface roughness in end face milling. Cutting experiments on C45E4 steel were conducted and the results were used for training and verifying the GPR model. Three parameters, spindle speed, feed rate, and depth of cut were considered; the experiment results showed that depth of cut is the main factor affecting the surface roughness and regression results showed that the GPR model has a good precision in predicting the surface roughness in different cutting conditions. The prediction accuracy was nearly about 84.3 %. Based on the GPR prediction model, 3D-maps of surface roughness under various cutting parameters could be obtained. It is very concise and useful to select the appropriate cutting parameters according to the maps. As experimental results did not conform to the empirical knowledge, frequency spectrums of the tool were analyzed according to the 3D-maps, it was found that tool vibration is also a crucial factor affecting the machined surface quality.  相似文献   

11.
Surface roughness is influenced by the machining parameters and other uncontrollable factors resulting from the cutting tool in end milling operations. To perform the in-process surface roughness prediction (ISRP) system accurately, the uncontrollable factors must be monitored. In this paper, an empirical approach using a statistical analysis was employed to discover the proper cutting force to represent the uncontrollable factors in end milling operations. Furthermore, an in-process neural network-based surface roughness prediction (INN-SRP) system was developed. A neural network associated with sensing technology was applied as a decision-making system to predict the surface roughness for a wide range of machining parameters. The good accuracy of the results for a wide range of machining parameters indicates that the system is suitable for application in industry. ID="A1"Correspondance and offprint requests to: Dr J. C. Chen, Department of Industrial Education and Technology, Iowa State University, 221 I. ED II, Ames, IA 50011–3130, USA. E-mail: cschen@iastate.edu  相似文献   

12.
This paper presents the results of an experimental study on the effects of machining parameters (cutting speed, feed, depth of cut) and tool shape on chip formation, surface topography, resultant cutting force and surface roughness produced in flat and ball end milling of the Ren Shape-Express 2000™ aluminum particulate filled-polymer composite material. This material is shown to exhibit a brittle-to-ductile transition in chip formation with decreasing cutting speed. The transition is explained by the strain-rate sensitivity of the polymer matrix and is found to correlate well with a corresponding change in the surface roughness. The absence of clear feed marks on the milled surface explains why molds made from the composite material require less hand polishing than machined metal molds. The influence of cutting conditions and tool shape (flat end vs. ball-nose) on the cutting force, surface roughness, and workpiece breakout are discussed and relevant comparisons with conventional metal and polymer machining are made.  相似文献   

13.
In manufacturing environment prediction of surface roughness is very important for product quality and production time. For this purpose, the finite element method and neural network is coupled to construct a surface roughness prediction model for high-speed machining. A finite element method based code is utilized to simulate the high-speed machining in which the cutting tool is incrementally advanced forward step by step during the cutting processes under various conditions of tool geometries (rake angle, edge radius) and cutting parameters (yielding strength, cutting speed, feed rate). The influences of the above cutting conditions on surface roughness variations are thus investigated. Moreover, the abductive neural networks are applied to synthesize the data sets obtained from the numerical calculations. Consequently, a quantitative prediction model is established for the relationship between the cutting variables and surface roughness in the process of high-speed machining. The surface roughness obtained from the calculations is compared with the experimental results conducted in the laboratory and with other research studies. Their agreements are quite well and the accuracy of the developed methodology may be verified accordingly. The simulation results also show that feed rate is the most important cutting variable dominating the surface roughness state.  相似文献   

14.
Milling is today the most effective, productive and flexible-manufacturing method for machining complicated or sculptured surfaces. Ball-end tools are used for machining 3D freeform surfaces for dies, moulds, and various parts, such as aerospace components, etc. Milling data, such as surface topomorphy, surface roughness, non-deformed chip dimensions, cutting force components and dynamic cutting behaviour, are very helpful, especially if they can be accurately produced by means of a simulation program. This paper presents a novel simulation model, the so-called MSN-Milling Software Needle program, which is able to determine the surface produced and the resulting surface roughness, for ball-end milling. The model simulates precisely the tool kinematics and considers the effect of the cutting geometry on the resulting roughness. The accuracy of the simulation model has been thoroughly verified, with the aid of a wide variety of cutting experiments. Many roughness measurements were carried out on workpieces, which were cut using a 5-axis machining centre. The calculated roughness levels were found to be in agreement with the experimental ones. The proposed model has proved to be suitable for determining optimal cutting conditions, when finishing complex surfaces. The software can be easily integrated into various CAD-CAM systems.  相似文献   

15.
This study presents the estimation of the optimal effect of the radial rake angle of the tool, combined with cutting speed and feed in influencing the surface roughness result. Studies on optimization of cutting conditions for surface roughness in end milling involving radial rake angle are still lacking. Therefore, considering the radial rake angle, this study applied simulated annealing in determining the solution of the cutting conditions to obtain the minimum surface roughness when end milling Ti-6Al-4V. Considering a set of experimental machining data, the regression model is developed. The best regression model was considered to formulate the fitness function of the simulated annealing. It was recommended that the cutting conditions should be set at highest cutting speed, lowest feed and highest radial rake angle in order to achieve the minimum surface roughness of 0.1385 µm. Subsequently, it was found that by using simulated annealing, the minimum surface roughness was much lower than the experimental sample data, regression modelling and response surface methodology technique by about 27%, 26% and 50%, respectively.  相似文献   

16.
The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.  相似文献   

17.
Development of an automatic arc welding system using SMAW process   总被引:1,自引:0,他引:1  
In end milling of pockets, variable radial depth of cut is generally encountered as the end mill enters and exits the corner, which has a significant influence on the cutting forces and further affects the contour accuracy of the milled pockets. This paper proposes an approach for predicting the cutting forces in end milling of pockets. A mathematical model is presented to describe the geometric relationship between an end mill and the corner profile. The milling process of corners is discretized into a series of steady-state cutting processes, each with different radial depth of cut determined by the instantaneous position of the end mill relative to the workpiece. For the cutting force prediction, an analytical model of cutting forces for the steady-state machining conditions is introduced for each segmented process with given radial depth of cut. The predicted cutting forces can be calculated in terms of tool/workpiece geometry, cutting parameters and workpiece material properties, as well as the relative position of the tool to workpiece. Experiments of pocket milling are conducted for the verification of the proposed method.  相似文献   

18.
Inconel 718 is a difficult-to-machine material while products of this material require good surface finish. Therefore, it is essential for the evaluation and prediction of surface roughness of machined Inconel 718 workpiece to be developed. An analytical model for the prediction of surface roughness under laser-assisted end milling of Inconel 718 is proposed based on kinematics of tool movement and elastic response of workpiece. The actual tool trajectory is first predicted with the consideration of overall tool movement, elastic deformation of tool, and the tool tip profile. The tool movements include the translation in feed direction and the rotation along its axis. The elastic deformation is calculated based on the previously established milling force prediction model. The tool tip profile is predicted based on the tool tip radius and angle. The machined surface profile is simulated based on the tool trajectory with elastic recovery, which is considered through the comparison between the minimum thickness and actual cutting thickness. Experiments are conducted in both conventional and laser-assisted milling under seven different sets of cutting parameters. Through the comparison between the analytical predictions and experimental measurements, the proposed model has high accuracy with the maximum error less than 27%, which is more accurate for lower feed rate with error less than 3%. The proposed analytical model is valuable for providing a fast, credible, and physics-based method for the prediction of surface roughness in milling process.  相似文献   

19.
SiC颗粒增强铝基复合材料高速铣削工艺研究   总被引:3,自引:1,他引:3  
从颗粒增强金属基复合材料的应用和切削加工现状出发 ,针对SiC颗粒增强铝基复合材料的高速切削加工性能进行了试验分析。通过铣削试验 ,研究了铣削速度对铣削力、加工表面粗糙度、表面形貌以及刀具磨损的影响 ,分析了该材料的高速切削机理 ,并获得了能够保证对其进行高效高精度加工的合理工艺参数。  相似文献   

20.
This paper discusses the use of Taguchi and response surface methodologies for minimizing the surface roughness in machining glass fiber reinforced (GFRP) plastics with a polycrystalline diamond (PCD) tool. The experiments have been conducted using Taguchi’s experimental design technique. The cutting parameters used are cutting speed, feed and depth of cut. The effect of cutting parameters on surface roughness is evaluated and the optimum cutting condition for minimizing the surface roughness is determined. A second-order model has been established between the cutting parameters and surface roughness using response surface methodology. The experimental results reveal that the most significant machining parameter for surface roughness is feed followed by cutting speed. The predicted values and measured values are fairly close, which indicates that the developed model can be effectively used to predict the surface roughness in the machining of GFRP composites. The predicted values are confirmed by using validation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号