首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of citric acid on paste hydration of 3CaO· Al2O3 in the presence of CaSO4·2H2O and Ca(OH)2 was studied using X-ray diffraction, scanning electron microscopy, and conduction calorimetry. The time at which the citric acid is added (either prior to or with the mixing water) determines how it affects the reactivity of the aluminate. Immediately after the paste is gaged citric acid promotes a more rapid reaction, but later reactions are retarded. Hexagonal calcium aluminate hydrates, ettringite, and monosulfate were all detected as early hydration products. The influence of citric acid on the hydration of 3CaO·Al2O3 slabs immersed in saturated CaSO4·2H2O solutions was also studied and a reaction scheme proposed.  相似文献   

2.
Paste samples of tricalcium aluminate alone, with CaCl2, with gypsum, and with gypsum and CaCl2 were hydrated for up to 6 months and the hydration products characterized by SEM, XRD, and DTA. Tricalcium aluminate hydrated initially to a hexagonal hydroaluminate phase which then changed to the cubic form; the transformation rate depended on the size and shape of the sample and on temperature. The addition of CaCl2 to tricalcium aluminate resulted in the formation of 3CaO · Al2O3· CaCl2·10H2O and 4CaO · Al2O3· 13H2O, or a solid solution of the two. The chloride retarded the formation of the cubic phase 3CaO · Al2O3· 6H2O; the addition of gypsum resulted in the formation of monosulfoaluminate with a minor amount of ettringite. When chloride was added to tricalcium aluminate and gypsum, more ettringite was formed, although 3CaO · Al2O3· CaSO4· 12H2O and 3CaO · Al2O3· CaCl2· 10H2O were the main hydration products.  相似文献   

3.
The rates of reaction of 3CaO. Al2O3, in sulfate-containing solutions of three compositions were investigated. It was observed that the rates of calcium and sulfate uptake decreased with increasing calcium hydroxide concentration. In a further experiment using a calcium sulfate solution, which also contained NaOH, it was established that the kinetics of calcium sulfoaluminate hydrate formation are strongly dependent on the hydroxyl ion concentration. The rate of sulfate ion consumption per unit surface area of 3CaO·Al2O3 was observed to be constant during the period in which a calcium sulfoaluminate hydrate is a reaction product. The ratio of calcium-to-sulfate ions consumed in the hydration reactions investigated exceeded unity suggesting the formation of 4CaO·Al2O3· n H2O in addition to ettringite.  相似文献   

4.
Liquid hydration and water-vapor hydration of 3CaO·Al2O3, were studied. Variable parameters were hydration time, temperature, relative humidity, and amount of gypsum. The hydration products (gel, ettringite, hexagonal hydrates, and 3CaO·Al2O3·6H2O) were studied by electron microscopy, X-ray diffractometry, and thermal analysis. A reaction scheme is proposed. The degree of water-vapor hydration influenced the sequence of the subsequent liquid hydration which, however, was independent of the composition of the water-vapor hydration products. Below a critical degree of water-vapor hydration (≊3% combined water) the reaction with liquid water occurred as if no water-vapor hydration had taken place. Above this value the reaction gave hydration products suggesting a change of the 3CaO·Al2O3 reactivity. A possible correlation with the retardation of strength development of prehydrated cement is suggested.  相似文献   

5.
Calcium hexa-aluminate (CaO·6Al2O3) has been prepared from calcium nitrate and aluminum sulfate solutions in the temperature range of 1000°–1400°C. A 0.3 mol/L solution of aluminum sulfate was prepared, and calcium nitrate was dissolved in it in a ratio that produced 6 mol of Al2(SO4)3·16H2O for each mole of Ca(NO3)2·4H2O. It was dried over a hot magnetic stirrer at ∼70°C and fired at 1000°–1400°C for 30–360 min. The phases formed were determined by XRD. It was observed that CaO·Al2O3 and CaO·2Al2O3 were also formed as reaction intermediates in the reaction mix of CaO·6Al2O3. The kinetics of the formation of CaO·6Al2O3 have been studied using the phase-boundary-controlled equation 1 − (1 − x )1/3= K log t and the Arrhenius plot. The activation energy for the low-temperature synthesis of CaO·6Al2O3 was 40 kJ/mol.  相似文献   

6.
The early stages of hydration of four different types of portland cements were studied by electron-optical and X-ray diffraction techniques. It was observed that, except for low-heat cement, very little ettringite formed up to 3 hours of hydration and that the alite present in the cements was more reactive than the laboratory form. Ettringite formed earlier in the low-heat cement than in other cements. Ettringite was found to be the stable sulfate-bearing phase in sulfateresistant cement, at least up to 30 months, although in other cements ettringite began to change to monosulfate by 14 days. Direct evidence was found for the formation of gypsum from either CaSO4±0.5H2O or soluble anhydrite in some cements.  相似文献   

7.
The morphological changes accompanying the conversion of the hexagonal CaO·Al2O3·10H2O phase to the cubic 3CaO·Al2O3·6H2O phase were studied by scanning electron microscopy. The hydration and conversion reactions were monitored by X-ray diffraction analysis. From the micrographs, it was inferred that changes in the pore structure and the presence of large cubic crystals of questionable adhesive value were probably the principal factors responsible for the loss of strength in converted calcium aluminate cement pastes.  相似文献   

8.
Phase equilibria have been determined in the system CaO-Al2O3-H2O in the temperature range 100° to 1000°C. under water pressures of up to 3000 atmospheres. Only three hydrated phases are formed stably in the system: Ca(OH)2, 3CaO·Al2O3·6H2O, and 4CaO·3Al2O3-3H2O. Pressure-temperature curves delineating the equilibrium decomposition of each of these phases have been determined, and some ther-mochemical data have been deduced therefrom. It has been established that both the compounds CaO·Al2O3 and 3CaO·Al2O3 have a minimum temperature of stability which is above 1000°C. The relevance of the new data to some aspects of cement chemistry is discussed.  相似文献   

9.
The chemistry of the aqueous phase of ordinary portland cement paste at early ages (<2 h) has been analyzed in terms of the concentrations of the elemental components in the pore fluid. The concentrations of calcium, sulfur, aluminum, and silicon are rationalized by plotting the data on "phase diagrams." To simplify the analysis, the portland cement system is described using two subsystems: (i) CaO-Al2O3-CaSO4-H2O, modified by the presence of sodium and potassium, and (ii) CaO-SiO2-H2O. During the first 10 min of hydration, the calcium, sulfur, and aluminum concentrations all decrease, roughly in proportion, which suggests a precipitation process, a conversion of calcium sulfate hemihydrate to gypsum, and the initial formation of ettringite. The CaO-Al2O3-CaSO4-H2O subsystem seems to move from a phase assemblage of gypsum, Al2O3·3H2O, and ettringite to an assemblage of gypsum, calcium hydroxide, and ettringite during the first 15-30 min after the water and the cement are mixed. The silicate equilibrium is approached more slowly. The intensity of mixing has relatively little effect on the concentrations beyond the first few minutes.  相似文献   

10.
Hydration occurring in the system Ca3Al2O6–CaSO4· 2H2O–Ca(OH)2–H2O has been studied at different temperatures and it was found that the reactions are diffusion controlled. The kinetic data obeyed Jander's equation and the rate of reaction increased with increasing temperature. X-ray diffraction studies and calorimetric measurements show that when gypsum is consumed, ettringite is converted into monosulfate. The rate of this conversion also increased with the increasing temperature and decreased in the presence of citric acid. Spectroscopic studies showed that there was some interaction between citric acid and the cement and that the product of hydration is of colloidal nature. Zeta potential measurements show that retardation of Ca3Al2O6 hydration in the presence of gypsum and Ca(OH)2 is not due to SO2−4 adsorption. Electrical conductivity and thermoelectric potential measurements of solid Ca3Al2O6 show that Ca3Al2O6 is an n -type semiconductor and contains defects. The retardation of Ca3Al2O6 may be due to poisoning of reaction sites by gypsum and Ca(OH)2.  相似文献   

11.
Strätlingite (2CaO·Al2O3·SiO2·8H2O) is a complex calcium aluminosilicate hydrate commonly associated with the hydration of slag-containing cements or other cements enriched in alumina. Strätlingite can coexist with the hydrogarnet solid solution [hydrogarnet (3CaO·Al2O3·6H2O)-katoite (3CaO·Al2O3·SiO2·4H2O)] and calcium silicate hydrate (C-S-H). Since Strätlingite is present in many blended cements, the knowledge of strätlingite's characteristic silicate anion structure and how aluminum is accommodated by the structure is important. Phase pure Strätlingite samples have been synthesized from oxides in the presence of excess water and from metakaolinite, calcium aluminate cement, CaO, NaOH, and water. The samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) and then further examined using 29Si, with and without cross-polarization (CP), and 27Al solid-state magic angle nuclear magnetic resonance spectroscopy (MASNMR). For the most part, NMR data for these strätlingites corroborate structural information available in the literature. The aluminum atoms are both tetrahedrally and octahedrally coordinated, and the silicon atoms exist predominantly as Q2, Q2(1Al), and Q2(2Al) species. The presence of alkali affects the structure of strätlingite in subtle ways, significantly reducing the AlIV/A1VI ratio.  相似文献   

12.
The influence of calcium sulfate on the hydration of 3CaO· Al2O3 in the presence of Ca(OH)2 was studied using conduction calorimetry, differential thermogravimetry, and X-ray diffraction. Sodium sulfate was also used instead of calcium sulfate. A substantial retardation of tricalcium aluminate hydration in the presence of sulfate occurs only when calcium sulfate is used and enough ettringite is formed. When ettringite disappears due to the consumption of gypsum, tricalcium aluminate hydration is renewed. Sodium sulfate does not significantly retard this hydration. The results confirm the hypothesis that ettringite formation is essential for coating 3CaO·Al2O3 grains and then retarding their hydration.  相似文献   

13.
The formation of ettringite (3CaO · Al2O3 · 3CaSO4 · 32H2O) and monosulfate (3CaO · Al2O3 · CaSO4 · 12H2O) from tricalcium aluminate (3CaO · Al2O3) and gypsum (CaSO4 · 2H2O) in sodium hydroxide (NaOH) solutions was investigated by isothermal calorimetry and X-ray diffraction analyses. Tricalcium aluminate/gypsum mixtures with a molar aluminate-to-sulfate ratio of 1:3 were hydrated at constant temperatures from 40 to 80°C in deionized water and 200 and 500 mM of NaOH solutions. Ettringite was the only crystalline phase ultimately formed between 40 and 80°C, regardless of whether hydration was carried out in deionized water or sodium hydroxide solutions. The rates of ettringite formation were retarded in sodium hydroxide solutions at all temperatures when compared to hydration in deionized water. The apparent activation energy for the conversion of the tricalcium aluminate/gypsum mixture to ettringite was observed to depend on the concentration of sodium hydroxide.  相似文献   

14.
The hydrolysis of pure and sodium-substituted calcium aluminates and cement clinker phases was investigated in situ in the temperature range 25°–170°C, using the angle dispersive powder synchrotron powder X-ray diffraction technique. The final hydrolysis product in all cases was Ca3Al2(OH)12. The intermediate phase Ca4Al2O7·19H2O was formed from the pure calcium aluminates, and the intermediate phases Ca4Al2O7· x H2O, x = 11, 13, or 19, were formed from the cement clinker phases.  相似文献   

15.
The influence of 0.3 wt% gluconute, lignosulfonate, or glucose on the hydration of 4CaO·A12O3-Fe2O3 in the presence of gypsum with or without Ca(OH)2, was examined. In the absence of Ca(OH)2 all the admixtures retard both ettringite production and subsequent conversion of ettringite into the monosulfate in the decreasing order glucose >lignosulfonate >gluconate. In the presence ofCa(OH)2 all the admixtures accelerate early ettringite production but do not affect subsequent conversion of ettringite into the monosulfate, at least up to 28 d.  相似文献   

16.
Synthesis of Titanate Derivatives Using Ion-Exchange Reaction   总被引:3,自引:0,他引:3  
Two types of titanate derivatives, layered hydrous titanium dioxide (H2Ti4O9· n H2O) and potassium octatitanate (K2Ti8O17) with a tunnellike structure, were synthesized using an ion-exchange reaction. Fibrous potassium tetratitanate (K2Ti4O9· n H2O) was prepared by calcination of a mixture of K2CO3 and TiO2 with a molar ratio of 2.8 at 1050°C for 3 h, followed by boiling-water treatment of the calcined products for 10 h. The material then was transformed to layered H2Ti4O9· n H2O through an exchange of K+ ions with H+ ions using HCl. K2Ti8O17 was formed by a thermal treatment of KHTi4O9· n H2O. Pure KHTi4O9· n H2O phase was effectively produced by a treatment of K2Ti4O9 with 0.005 M HCl solution for 30 min. Thermal treatment at 250°–500°C for 3 h resulted in formation of only K2Ti8O17.  相似文献   

17.
Hydration reactions of C3A and C4AF with calcium sulfate hemihydrate and gypsum were investigated and the kinetics of the reactions compared. The rates of C3A and C4AF hydration, as determined by heat evolution, vary depending on whether the sulfate-containing reactant is gypsum or calcium sulfate hemihydrate. The following sequence of reactions involving C4AF occurs when hemihydrate is the reactant: gypsum formation during the first hour, ettringite formation between 20 and 36 hours, and the conversion of ettringite to monosulfate over a period of about 12 hours. Monosulfate formation initiates prior to the complete consumption of gypsum. The onset of this conversion occurs at a shorter hydration time when hemihydrate is a reactant and the total amount of heat evolved is lower. The hydration reactions in saturated calcium hydroxide solution occur more slowly than those in water. Based on heat liberation, C4AF reacts at a much higher rate than C3A. Ettringite formation occurs during the first 8 to 9 days of C3A hydration. Once the gypsum is consumed, ettringite converts to monosulfate during two additional days. Compared to gypsum, hemihydrate decreases the rates of hydration of both C3A and C4AF. The effects on the hydration characteristics of C4AF are significant. The hydration of C3A with gypsum in water, in saturated Ca(OH)2 solution, and in 0.3 M NaOH solution were compared. Heat evolution is the lowest for hydration in 0.3 M NaOH. The onset of monosulfate formation occurs prior to the complete reaction between gypsum and C3A in the NaOH solution.  相似文献   

18.
A portion of the quaternary phase diagram for Na2O-CaO-SiO2-H2O has been constructed. Plotting concentrations as their 10th roots allows compounds having solubilities which differ by several orders of magnitude to be represented on a single diagram. The compositional relationships among sodium-substituted calcium silicate hydrate, calcium-substituted sodium silicate hydrate, calcium bydroxide, a quaternary compound of approximate composition 0.25Na2O · CaO · SiO2· 3H2O, sodium hydroxide monohydrate, and miscellaneous sodium silicate hydrates are presented. The quaternary diagram constructed shows the quaternary compound to exist in equilibrium with sodium-substituted calcium silicate hydrate and calcium hydroxide. Conditions in concrete pore solutions which favor the formation of this quaternary compound may also favor the occurrence of the alkali-silica reaction.  相似文献   

19.
The reaction of rare-earth (RE; Y, Er, and Yb) chloride hydrates in 1,4-butanediol at 300°C for 2 h gave mixtures of RE(OH)2Cl and RE2O3· x H2O, and the products were composed of irregularly shaped particles. A prolonged reaction (10 h) yielded a mixture of RE(OH)2Cl and RE2O3· x H2O for Er or Y, but phase-pure RE2O3· x H2O was obtained for Yb. The product for Yb comprised needle-shaped single crystals of Yb2O3· x H2O with a width of 0.2–0.6 μm and a length of 5–15 μm. The Yb2O3· x H2O phase decomposed to Yb2O3 at 350°–500°C, preserving the needle-shaped morphology; this was maintained even after calcination at 1100°C. Single crystals of Yb2O3 obtained by the calcination of Yb2O3· x H2O at 500°C had very small voids and the voids were enlarged to 35 Å in diameter by calcination at 800°C.  相似文献   

20.
The compound compositions of four aluminous cements were determined on anhydrous as well as hydrated specimens which had been heat-treated at temperatures between room temperature and 1400° C. Phases were identified by X-ray diffraction and differential thermal analysis. Specimens were also tested for transverse strength, dynamic modulus of elasticity, and thermal length change. A study of the dehydration characteristics of CaO - Al2O8 - 10H2O3 3CaO.Al2O3. 6H2O, and Al2O3. 3H2O was included. The data indicated that CaO. Al2O3 10H2O was the primary crystalline hydrate formed in the cements at room temperature. At 50° C., 3 CaO Al2O3-6H2O and Al2O3. 3H2O were formed as by-products of the dehydration of CaO.Al2O3.10H2O. When heated alone in an open system, CaO.Al2O3.10H2O did not convert to 3CaO. Al2O3. 6H2O and A12O3. 3H2O. A correlation between the mechanical properties and compound compositions was noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号