首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of mast cells near capillary sprouting sites suggests an association between mast cells and angiogenesis. However, the role of mast cells in blood vessel development remains to be defined. In an attempt to elucidate this relationship, we investigated the effect of human mast cells (HMC-1) and their products on human dermal microvascular endothelial cell (HDMEC) tube formation. Coculture of HMC-1 with HDMEC led to a dose-response increase in the network area of vascular tube growth. Moreover, the extent of neovascularization was enhanced greatly when HMC-1 were degranulated in the presence of HDMEC. Further examination using antagonists to various mast cell products revealed a blunted response (73-88% decrease) in the area of vascular tube formation if specific inhibitors of tryptase were present. Tryptase (3 microg/ml) directly added to HDMEC caused a significant augmentation of capillary growth, which was suppressed by specific tryptase inhibitors. Tryptase also directly induced cell proliferation of HDMEC in a dose-dependent fashion (2 pM-2 nM). Our results suggest that mast cells act at sites of new vessel formation by secreting tryptase, which then functions as a potent and previously unrecognized angiogenic factor.  相似文献   

2.
3.
4.
5.
Histamine is an important mediator in allergic reactions, gastric acid secretions, and neurotransmission in the central nervous system. Basophils and mast cells are the main sources of histamine, which is formed from L-histidine by histidine decarboxylase (HDC). However, the regulatory mechanism of HDC in these cells remains unclear. We examined the regulation of HDC activity and gene expression using a unique human mast cell line, HMC-1, after stimulation with phorbol 12-myristate 13-acetate (PMA) or ionomycin. HDC activity was increased from 52.1+/-0.4 (mean+/-standard deviation) to 154+/-6.9, or 105.6+/-6.2 pmol/min/mg protein (n = 3), 4 hours after stimulation with PMA (10 ng/mL) or ionomycin (10[-6] M). Although actinomycin D had no effect on this increase, cycloheximide completely inhibited the increase caused by these stimuli. The population of HMC-1 cells containing HDC protein was increased after stimulation with either PMA or ionomycin as evaluated by immunocytochemical analysis with anti-HDC antibody as a marker. HMC-1 constitutively expressed HDC mRNA, and its level was not increased with these stimuli. These results suggest that the increase of HDC activity in HMC-1 induced by PMA or ionomycin is regulated at the translational level.  相似文献   

6.
7.
8.
9.
10.
Recent data suggest that mast cells (MC) and their products (heparin, proteases) are involved in the regulation of coagulation and fibrino(geno)lysis. The key enzyme of fibrinolysis, plasmin, derives from its inactive progenitor, plasminogen, through catalytic action of plasminogen activators (PAs). In most cell systems, however, PAs are neutralized by plasminogen activator inhibitors (PAIs). We report that human tissue MC as well as the MC line HMC-1 constitutively produce, express, and release tissue-type plasminogen activator (tPA) without producing inhibitory PAIs. As assessed by Northern blotting, highly enriched lung MC (>98% pure) as well as HMC-1 expressed tPA mRNA, but did not express mRNA for PAI-1, PAI-2, or PAI-3. The tPA protein was detectable in MC-conditioned medium by Western blotting and immunoassay, and the MC agonist stem cell factor (c-Kit ligand) was found to promote the release of tPA from MC. In addition, MC-conditioned medium induced fibrin-independent plasmin generation as well as clot lysis in vitro. These observations raise the possibility that MC play an important role in endogenous fibrinolysis.  相似文献   

11.
12.
Mast cells hold a key position in the defensive mechanisms against exogenous intruders. In this study, we investigated whether human mast cells express functional major histocompatibility complex (MHC) class II molecules that can transduce endogenous signals and present staphylococcal enterotoxin A (SEA) to T cells. Similar to HMC-1 human mast cell line, umbilical cord blood-derived mast cells express HLA-DR, -DP and -DQ molecules on their surface. MHC class II molecules expressed on HMC-1 cells bind significantly the SEA (a natural MHC class II ligand), and their ligation with specific mAbs or with SEA, leads ultrastructural changes, suggesting their degranulation. Recognition of SEA-bound MHC class II molecules on HMC-1 mast cells by the T cell receptor of K25 cells, an SEA-specific murine T cell hybridoma, triggers significant IL-2 secretion by these T cell hybridomas. Hence, our data point out the expression of functional MHC class II molecules on human mast cells, reinforcing the implication of these cells in the defense mechanisms of acquired immunity.  相似文献   

13.
14.
15.
Although the importance of the vascular endothelial growth factor (VEGF)/VEGF tyrosine kinase receptor (VEGFR) system in angiogenesis is well established, very little is known about the regulation of VEGFR expression in vascular endothelial cells. We have cloned partial cDNAs encoding bovine VEGFR-1 (flt) and -2 (flk-1) and used them to study VEGFR expression by bovine microvascular- and large vessel-derived endothelial cells. Both cell lines express flk-1, but not flt. Transforming growth factor beta 1 (TGF-beta 1) reduced the high affinity 125I-VEGF binding capacity of both cell types in a dose-dependent manner, with a 2.0-2.7-fold decrease at 1-10 ng/ml. Cross-linking experiments revealed a decrease in 125I-VEGF binding to a cell surface monomeric protein corresponding to Flk-1 on the basis of its affinity for VEGF, molecular mass (185-190 kDa), and apparent internalization after VEGF binding. Immunoprecipitation and Western blot experiments demonstrated a decrease in Flk-1 protein expression, and TGF-beta 1 reduced flk-1 mRNA levels in a dose-dependent manner. These results imply that TGF-beta 1 is a major regulator of the VEGF/Flk-1 signal transduction pathway in endothelial cells.  相似文献   

16.
To further elucidate mechanisms involved in mast cell accumulation at sites of cutaneous inflammation, we have studied the ability of human leukemic mast cells (HMC-1 cells) to express functionally active IL-8 receptors. Expression of mRNA for both types of IL-8 receptors (CXCR1 and CXCR2) was demonstrated by PCR and of both proteins by flow cytometry. Binding and competition studies with 125I-labeled IL-8 and its homologue melanoma growth stimulating activity (125I-labeled MGSA) revealed two specific binding sites for IL-8, K1 = 1.1 x 10(11) M(-1) and K2 = 5 x 10(7) M(-1); and for MGSA, K1 = 2.8 x 10(10) M(-1) and K2 = 5 x 10(7) M(-1). This finding was supported by a dose-dependent rise of cytosolic free calcium concentration ([Ca2+]i) induced by both chemokines and to a lesser extent by the homologue neutrophil-activating peptide-2 (NAP-2). A significant migratory response of human leukemic mast cells (HMC-1) was observed with all three chemokines at a range from 10(-8) M to 10(-9) M. Moreover, the formation of cellular F-actin was induced in a rapid, dose-dependent fashion, with a maximally 1.7-fold increase at 10(-7) M. Using postembedding immunoelectron microscopy, we could show the expression of CXCRI on the cytoplasmatic membrane of isolated human skin mast cells whereas CXCR2 was located in mast cell-specific granules. These findings demonstrate for the first time the functional expression of both types of IL-8 receptors on human mast cells, suggesting a role for their ligands during mast cell activation and recruitment.  相似文献   

17.
The effect of human mast cells on fibroblast activity was studied using an organotypic skin-equivalent culture system. Human mast cell-1 (HMC-1) cells were embedded in a collagen gel with neonatal dermal fibroblasts at a ratio of 1:4; keratinocytes then were allowed to stratify above this composite culture. Analysis of type a1(I) procollagen mRNA synthesis by in situ hybridization revealed a substantial increase in mRNA levels in the presence of mast cells and especially following degranulation, induced by calcium ionophore A23187. Tryptase, a major product of human mast cells, could substitute for mast cells in this culture system, up-regulating procollagen mRNA synthesis. Tryptase pretreated with the specific protease inhibitor bis(5-amidino-2-benzimidazo-lyl)methane (BABIM) markedly attenuated the collagen mRNA up-regulation. Further studies revealed HMC-1 cell sonicates stimulated fibroblast chemotaxis and procollagen mRNA synthesis. Inhibition of HMC-1 sonicates with either BABIM or a neutralizing mAb against tryptase resulted in significant reduction of fibroblast chemotaxis and procollagen mRNA, implying that tryptase accounted for the majority of HMC-1 sonicate activity. Tryptase directly stimulated fibroblast chemotaxis with optimal concentrations between 10 pM and 1 nM. The maximal response of optimal concentrations of tryptase was comparable with the known fibrogenic factor, TGF-beta. Inhibition of tryptase with BABIM resulted in approximately 50% reduction in chemotactic activity. Additional studies revealed that tryptase (0.3-3 nM) stimulated procollagen mRNA synthesis in confluent monolayers of dermal fibroblasts.  相似文献   

18.
BACKGROUND: Vascular endothelial growth factor (VEGF) is a vascular endothelial cell-specific mitogen secreted by some cancer cells and is a major regulator of angiogenesis. Because thyroid-stimulating hormone (TSH) promotes growth and progression of thyroid cancers, we postulated that TSH may increase the production and secretion of VEGF by thyroid cancer cells. METHODS: We examined primary cultures of normal human thyroid (NT 1.0), medullary thyroid cancer (MTC 1.1), and cell lines derived from the papillary (TPC-1), follicular (FTC-133), and Hürthle cell (XTC-1) thyroid cancer. We quantified the concentration of VEGF in conditioned medium by means of enzyme-linked immunosorbent assay. RESULTS: Cell lines derived from thyroid secrete VEGF. Basal VEGF secretion was similar in normal and thyroid cancer cells, except XTC-1, which has high basal secretion (p < 0.01). All thyroid cancer cells secrete significantly more VEGF than normal thyroid cells after TSH (10 mIU/ml) stimulation (p < 0.05). TSH stimulated secretion of VEGF in FTC-133 (8.2 ng/dl versus 18.8 ng/dl), TPC-1 (5.5 ng/dl versus 26.9 ng/dl), and MTC 1.1 (5.9 ng/dl versus 13.4 ng/dl) cell lines (p < 0.01), but not in NT 1.0 (8.4 ng/dl versus 9.9 ng/dl) and XTC-1 (25.4 ng/dl versus 31.2 ng/dl) cells. CONCLUSIONS: These results suggest that VEGF secretion is constitutively activated in some thyroid cancers and that VEGF secretion is stimulated by TSH; thus TSH may promote growth in some thyroid cancers by stimulating VEGF secretion and angiogenesis.  相似文献   

19.
Vascular permeability factor/vascular endothelial cell growth factor (VPF/VEGF) can both potently enhance vascular permeability and induce proliferation of vascular endothelial cells. We report here that mouse or human mast cells can produce and secrete VPF/VEGF. Mouse mast cells release VPF/VEGF upon stimulation through Fcepsilon receptor I (FcepsilonRI) or c-kit, or after challenge with the protein kinase C activator, phorbol myristate acetate, or the calcium ionophore, A23187; such mast cells can rapidly release VPF/VEGF, apparently from a preformed pool, and can then sustain release by secreting newly synthesized protein. Notably, the Fc epsilonRI-dependent secretion of VPF/VEGF by either mouse or human mast cells can be significantly increased in cells which have undergone upregulation of Fc epsilonRI surface expression by a 4-d preincubation with immunoglobulin E. These findings establish that at least one cell type, the mast cell, can be stimulated to secrete VPF/VEGF upon immunologically specific activation via a member of the multichain immune recognition receptor family. Our observations also identify a new mechanism by which mast cells can contribute to enhanced vascular permeability and/or angiogenesis, in both allergic diseases and other settings.  相似文献   

20.
The c-kit protooncogene encodes a receptor tyrosine kinase that mediates signals required for differentiation, proliferation and survival of mast cells. We have already shown the constitutive activation of c-kit receptor tyrosine kinase (KIT) in a human mast cell leukemia line (HMC-1) and a murine mastocytoma cell line (P-815). We here examined whether such constitutive activation of KIT occurred in the rat tumor mast cell line RBL-2H3 as well, which is frequently used as a tool for studying functions of mast cells. In RBL-2H3 cells, KIT was constitutively phosphorylated on tyrosine and activated in the absence of autocrine production of its ligand, stem cell factor (SCF). Sequencing analysis revealed that one of c-kit genes of RBL-2H3 cells had a point mutation, resulting in amino acid substitution of Tyr for Asp in codon 817. When rat wild-type c-kit cDNA and mutant-type c-kit cDNA encoding KITTyr817 were transfected into cells of a human embryonic kidney cell line (293T), only mutant form KITTyr817 was constitutively phosphorylated on tyrosine and activated in the absence of SCF. Since mutations at the same Asp codon constitutively activated KIT in all the human HMC-1, murine P-815, and rat RBL-2H3 cell lines, and since the incorporation of antisense oligonucleotides of c-kit messenger RNA significantly suppressed the proliferation of RBL-2H3 cells, the activating mutations in the Asp codon of the c-kit gene appeared to be involved in neoplastic growth of mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号