首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The solution behaviour of a new mesogenic side group polyacrylate in tetrahydrofuran and toluene has been investigated by static and dynamic light scattering. In the dilute regime the polymer behaves as typical polydisperse linear chains in good solvent and the dynamics is dominated by a single fast mode. Cluster formation was detected starting at a concentration around 50 g l−1. It seems to be independent of the solvent as well as of polymer molecular weight. In the semidilute regime, the behaviour of the reduced osmotic modulus leads to the conclusion that repulsion between the chains is stronger than in linear macromolecules. The appearance of larger clusters was revealed above a characteristic concentration and is slightly dependent on the polyacrylate molecular weight. The dynamics was generally characterised by a fast mode related to the cooperative diffusion and by a slow mode associated with large clusters. The existence of a network of multiconnected clusters is envisaged with increasing solution concentration.  相似文献   

2.
Poly(dimethylsiloxane) (PDMS) interpenetrating networks (IPNs) of two different molecular weight PDMS were prepared. Six series of IPNs were obtained by first tetra-functionally end-linking long vinyl-terminated PDMS (molar mass 23 × 103 or 21 × 103 g mol−1) neat or in a 50% solution with unreactive PDMS chains. These networks were then dried and swollen with short reactive telechelic PDMSs (molar mass 800, 2.3 × 103 or 5.7 × 103 g mol−1) that were subsequently end-linked. The mechanical, toughness and swelling properties of these IPNs were investigated. We found that the correlation between modulus (E) and equilibrium swelling (Q) in toluene of the PDMS IPNs obeys a scaling relation identical to that of a normal unimodal PDMS network. This result strongly suggests effective load transfer between the networks. The results of the elastic modulus and of the toughness of the networks represented by the energy required to rupture them were analyzed in terms of a recent model by Okumura [Europhys Lett 2004;67:470.]. Although the modulus results are in reasonable agreement with the equal-stress model of Okumura, the toughness results are not. In addition, our measured toughness decreases instead of increases with composition in an opposite trend to that predicted by the equal-strain model. An empirical model based on fracture mechanics gives a good representation of the toughness data.  相似文献   

3.
C.P. Buckley  C. Prisacariu 《Polymer》2007,48(5):1388-1396
A new family of crosslinked polyurethanes was synthesized and characterized as shape-memory polymers. Three-arm network junctions are provided by 1,1,1-trimethylol propane with an isocyanate group on each arm. Three diisocyanates are used: 4,4′-methylene bis(phenyl isocyanate), toluene diisocyanate, and 4,4′-dibenzyl diisocyanate. They are linked together by macrodiol soft segments formed from either polytetrahydrofuran with molar mass of 650, 1000 or 2000 g mol−1 or polycaprolactone glycol with molar mass of 830 or 1250 g mol−1. Thermorheological response of each polymer was characterized by tensile creep tests through the glass transition of the soft segments, to obtain the linear viscoelastic retardation spectrum, limiting compliances and time-temperature shift factor. These were used to predict significant features of shape-memory performance. With a decrease in soft segment chain length, the temperature of maximum shape recovery rate increased and the width of the recovery window decreased, consistent with loss of soft segment chain mobility remote from the crosslinks. Tensile modulus in the switched condition (above Tg) was 8-16 MPa, increasing with crosslink density and hard-segment rigidity. The results confirmed the potential of these polyurethanes as a new family of tunable shape-memory materials.  相似文献   

4.
Highly ion-conductive solid polymer electrolyte (SPE) based on polyethylene (PE) non-woven matrix is prepared by filling poly(ethylene glycol) (PEG)-based crosslinked electrolyte inside the pores of the non-woven matrix. The PE non-woven matrix not only shows good mechanical strength for SPE to be a free-standing film, but also has very porous structure for high ion conductivity. The ion conductivity of SPE based on PE non-woven matrix can be enhanced by adding sufficient non-volatile plasticizer such as poly(ethylene glycol) dimethyl ether (PEGDME) into ion conduction phase without sacrificing mechanical strength. SPE with 20 wt.% crosslinking agent and 80 wt.% non-volatile plasticizer shows 3.1 × 10−4 S cm−1 at room temperature (20 °C), to our knowledge, which is the highest level for SPEs. It is also electrochemically stable up to 5.2 V and has high transference number about 0.52 due to the introduction of anion receptor as an additive. The interfacial resistance between Li electrode and SPE is low enough to perform charge/discharge test of unit cell consisting of LiCoO2/SPE/Li at room temperature. The discharge capacity of the unit cell shows 87% of theoretical value with 86% Coulombic efficiency.  相似文献   

5.
Polyacrylamide (PAAm) hydrogels are obtained in an efficient and controlled manner by means of photocrosslinking of linear PAAm chains which are functionalized with dimethylmaleimide (DMMI) groups. The reaction is conveniently performed in the presence of thioxanthone disulfonate as a triplet sensitizer.The fundamental investigation of the photoreaction on the basis of model compounds shows that the dimerization of DMMI groups in aqueous solution leads to asymmetric products instead of the expected cyclobutane derivatives. Nevertheless, crosslinking occurs in a well controlled manner without perceptible side reactions. The systematic analysis of the progress of the reaction by means of UV-vis spectroscopy indicates that the rate of dimerization is simply proportional to the concentration of sensitizer and the intensity of irradiation. The dimerization reaction can be interrupted at any intermediate stage by discontinuing the UV irradiation in order to study the system as it changes from a semi-dilute polymer solution to a fully crosslinked gel.The network formation was investigated macroscopically by rheology and microscopically by multiple-quantum NMR experiments. The results clearly indicate that the formation of active network strands occurs in proportion with DMMI conversion. The crosslinking efficiency varies markedly with concentration, but is surprisingly high (>60% at 80 g L−1), while the length of the network chains seems to be independent of concentration.  相似文献   

6.
A new kind of polymer gel electrolyte based on poly(acrylic acid)-poly(ethylene glycol) (PAA-PEG) hybrid was synthesized. The factor of molecular weight of PEG in the hybrid plays an important role in determining the liquid electrolyte absorbency of the hybrid and ionic conductivity of the polymer gel electrolyte, sequentially affects the photovoltaic performance of quasi-solid-state dye-sensitized solar cells. Using the hybrid with PEG molecular weight of 20,000, a polymer gel electrolyte with liquid electrolyte absorbency of 6.9 g g−1 and ionic conductivity of 5.35 mS cm−1 was obtained. Based on the polymer gel electrolyte, a quasi-solid-state dye-sensitized solar cell with conversion efficiency of 5.25% was achieved under irradiation of AM 1.5, 100 mW cm−2.  相似文献   

7.
The electrochemical behaviour of ferrocene was studied in different gel polymer electrolytes based on methyl, ethyl and 2-ethoxyethyl methacrylate and compared to the liquid aprotic solution (propylene carbonate). Voltammetric and chronoamperometric measurements on microelectrodes were conducted in order to describe the qualitative as well as quantitative behaviour of ferrocene in different conditions. Heterogeneous electron-transfer rate constants and diffusion coefficients of ferrocene in polymer electrolytes were estimated to be 1.1-7.8 × 10−3 cm s−1 and 4-13 × 10−8 cm2 s−1 depending on the electrolyte composition. The influence of the polymer polarity, ferrocene concentration and level of polymer cross-linkage on the kinetics of ferrocene oxidation and its transport was discussed. The electrolytes with poly(2-ethoxyethyl methacrylate) exhibit the highest ionic conductivity (2-4 × 10−4 S cm−1) as well as diffusion coefficient of ferrocene (1.3 × 10−7 cm2 s−1) in their structure.  相似文献   

8.
A multiwall carbon nanotubes (MWNTs)-chitosan modified glassy carbon electrode (GCE) exhibits attractive ability for highly sensitive cathodic stripping voltammetric measurements of bromide (Br). In pH 1.8 H2SO4 solution, a substantial increase in the stripping peak current of Br (compared to bare GCE and chitosan modified GCE) is observed using MWNTs-chitosan modified electrode. Operational parameters were optimized and the electrochemical behaviors of Br were studied by different electrochemical methods. The kinetics parameters were measured, the number of electron transfer (n) was 1 and the transfer coefficient (α) is 0.17. A wide linear calibration range (3.6 × 10−7-1.4 × 10−5 g mL−1) was achieved, with a detection limit of 9.6 × 10−8 g mL−1. The mechanism of electrode reaction was fully discussed.  相似文献   

9.
Wang S  Yaszemski MJ  Gruetzmacher JA  Lu L 《Polymer》2008,49(26):5692-5699
We present a material design strategy of combining crystallinity and crosslinking to control the mechanical properties of polymeric biomaterials. Three polycaprolactone fumarates (PCLF530, PCLF1250, and PCLF2000) synthesized from the precursor polycaprolactone (PCL) diols with nominal molecular weights of 530, 1250, and 2000 g mol−1, respectively, were employed to fabricate polymer networks via photo-crosslinking process. Five different amounts of photo-crosslinking initiator were applied during fabrication in order to understand the role of photoinitiator in modulating the crosslinking characteristics and physical properties of PCLF networks. Thermal properties such as glass transition temperature (Tg), melting temperature (Tm), and degradation temperature (Td) of photo-crosslinked PCLFs were examined and correlated with their rheological and mechanical properties.  相似文献   

10.
Ashok K. Das 《Polymer》2010,51(10):2244-30
Translocation of polymer chains under the application of an external force has been studied through coarse-grained Monte Carlo simulations. The chains are pulled through a nanotube of finite length and diameter and their translocation times measured. The average translocation time, τ follows a scaling relation involving the chain length, N and applied force, F as, τ ∼ Nν′F−μ, where ν′ and μ are two different exponents (ν′ = 0.674, and μ = 0.95 ± 0.05). The scaling law is closely similar to the nanopore translocation scaling law reported by Milchev et al. [Ann N Y Acad Sci 2009;1161:95]. Characteristic signatures of the chain escape time have been exhibited by the square of end-to-end distance R2, axial radius of gyration Rg−x and other constituent properties. The behavior of the linear polymers under the application of a pulling force has been exploited to gain insights into the ultrafiltration process of unentangled polymers in dilute solution. The generic pulling force-translocation time (F, τ) data obtained through simulation can be matched reasonably well with the hydrodynamic force-critical macroscopic flow time (fh, Qc−1) data and also with the hydrodynamic force-reduced critical microscopic flow time (fh, qc−1) data obtained in the ultrafiltration experiment on long linear polystyrene chains in cyclohexane, as recently reported by Ge et al. [Macromolecules 2009;42:4400] The simulation technique reported here may be extended to study biomolecular transports occurring in long protein channels, as studied experimentally through current-time or voltage-time traces.  相似文献   

11.
The voltammeric behavior of the herbicide cyclosulfamuron has been studied by square wave stripping voltammetry (SWSV). Cyclosulfamuron was reduced on a static mercury drop electrode (SMDE) and gave a well-defined peak in the pH range of 3.0-7.0. The peak potential (Ep) shifts to a more negative potential with increasing pH. The ratio ΔEp/ΔpH over the pH range studied was 59.5 mV/pH. A systematic study of the various experimental parameters that affect the stripping response was studied by SWV. The square wave parameters used were a frequency of 150 Hz, an amplitude of −60 mV and a staircase step of 6.0 mV. The quantifications were performed by the standard addition method, from the SW voltammetric peak obtained at −1348 mV. Calibration curves were linear in the range of 10-350 μg L−1 with a detection limit of 3.5 μg L−1 under the conditions used (pH 6.0 buffer solution, Eacc = −400 mV vs. Ag/AgCl, tacc = 75 s). The validity of the developed methodology was assessed by recovery experiments at the 25-100 μg L−1 level. The mean results for 3 determinations were 49.7 ± 3.3 μg L−1, which is very close to the amount of cyclosulfamuron added to soil (50 μg L−1), with a recovery of 99.4%. The sufficiently good recoveries and low relative standard deviation (RSD) data reflects the high accuracy and precision of the proposed SW voltammetric method. The possible influences of various inorganic species and other pesticides were also investigated.  相似文献   

12.
Electrochemical properties of polymer gel electrolytes based on polymethylmethacrylate (PMMA) were studied by cyclic voltammetry and impedance spectroscopy using new solid-state PMMA-Cd-Cd2+ reference electrode. The suitable potential window of the PC-PMMA system was estimated from -0.2 to + 1.5 V versus Cd-Cd2+. New polymer gels containing ferrocene-ferricinium (Fc-Fc+) couple and other transition metal complexes were prepared by the direct polymerisation of methylmethacrylate (MMA) monomer and the solution of metal complex and supporting electrolyte in anhydrous aprotic solvent—propylene carbonate (PC). The half-wave potentials and apparent diffusion coefficients of used complexes and their dependence on the composition of the system (liquid or gel) were estimated. Time dependent electrochemical measurements showed almost three order decrease of the diffusion coefficients of ferrocene (Fc) and ferricinium (Fc+) cation from 6 × 10−5 to 2 × 10−9 cm2 s−1 during the polymerisation from the liquid to the polymer state. The results show that the PC-PMMA gel electrolyte can be described as a system of embedded solvent in the polymer network of PMMA without present monomer.  相似文献   

13.
The Nafion/zeolite composite membranes were synthesized for polymer electrolyte fuel cells (PEMFCs) by adding zeolite in the matrix of Nafion polymer. Two kinds of zeolites, Analcime and Faujasite, having different Si/Al ratio were used. The physico-chemical properties of the composite membranes such as water uptake, ion-exchange capacity, hydrogen permeability, and proton conductivity were determined. The fabricated composite membranes showed the significant improvement of all tested properties compared to that of pure Nafion membrane. The maximum proton conductivity of 0.4373 S cm−1 was obtained from Nafion/Analcime (15%) at 80 °C which was 6.8 times of pure Nafion (0.0642 S cm−1 at 80 °C). Conclusively, Analcime exhibited higher improvement than Faujasite.  相似文献   

14.
A gel polymer electrolyte based on poly(acrylonitrile-co-styrene) as polymer matrix and N-methyl pyridine iodide salt as I source was prepared. Controlling the concentration of polymer matrix of poly(acrylonitrile-co-styrene) at 17.5 wt.%, mixing the binary organic solvents mixture ethylene carbonate and propylene carbonate with 6:4 (w/w), and the concentration of N-methyl pyridine iodide and iodine with 0.5 and 0.05 M, respectively, the gel polymer electrolyte attains the maximum ionic conductivity (at 30 °C) of 4.63 mS cm−1. Based on the gel polymer electrolyte, a quasi-solid state dye-sensitized solar cell was fabricated and its overall energy conversion efficiency of light-to-electricity of 3.10% was achieved under irradiation of 100 mW cm−2.  相似文献   

15.
In this study, a strategy for synthesizing lithium methacrylate (LiMA)-based self-doped gel polymer electrolytes was described and the electrochemical properties were investigated by impedance spectroscopy and linear sweep voltammetry. LiMA was found to dissolve in ethylene carbonate (EC)/diethyl carbonate (DEC) (3/7, v/v) solvent after complexing with boron trifluoride (BF3). This was achieved by lowering the ionic interactions between the methacrylic anion and lithium cation. As a result, gel polymer electrolytes consisting of BF3-LiMA complexes and poly(ethylene glycol) diacrylate were successfully synthesized by radical polymerization in an EC/DEC liquid electrolyte. The FT-IR and AC impedance measurements revealed that the incorporation of BF3 into the gel polymer electrolytes increases the solubility of LiMA and the ionic conductivity by enhancing the ion disassociations. Despite the self-doped nature of the LiMA salt, an ionic conductivity value of 3.0 × 10−5 S cm−1 was achieved at 25 °C in the gel polymer electrolyte with 49 wt% of polymer content. Furthermore, linear sweep voltammetry measurements showed that the electrochemical stability of the gel polymer electrolyte was around 5.0 V at 25 °C.  相似文献   

16.
A gold electrode surface was modified using a dinuclear copper complex [CuII2 (Ldtb)(μ-OCH3)](BPh4) and then coated with a chitosan film. This biomimetic polymer film-coated electrode was employed to eliminate the interference from ascorbic acid and uric acid in the sensitive and selective determination of dopamine. The optimized conditions obtained for the biomimetic electrode were 0.1 M phosphate buffer solution (pH 8.0), complex concentration of 2.0 × 10−4 M, 0.1% of chitosan and 0.25% of glyoxal. Under the optimum conditions, the calibration curve was linear in the concentration range of 4.99 × 10−7 to 1.92 × 10−5 M, and detection and quantification limits were 3.57 × 10−7 M and 1.07 × 10−6 M, respectively. The recovery study gave values of 95.2-102.6%. The lifetime of this biomimetic sensor showed apparent loss of activity after 70 determinations. The results obtained with the modified electrode for dopamine quantification in the injection solution matrix were in good agreement with those of the pharmacopoeia method.  相似文献   

17.
Hongwei Chen 《Polymer》2008,49(8):2095-2098
Polystyrene-block-poly(4-vinylpyridine) (PS-b-PVP) forms hairy micelles with PVP and long PS block as the core and corona in toluene, respectively. Diffusion of the micelles in solution in the presence of poly(methyl methacrylate) (PMMA) or polystyrene homopolymer (h-PS), from dilute to semidilute, has been investigated by laser light scattering (LLS). Our results indicate the micelles only exhibit translational diffusion with characteristic Γ = Dq2 in PMMA dilute and semidilute solutions, where Γ, D and q are characteristic line width, translational diffusion coefficient and scattering vector, respectively. PMMA concentration dependence of D reveals that the micelle diffusion follows a “stretched exponential” scaling law, similar to that of a hard sphere in the presence of matrix polymer. This is because the PS corona is incompatible with PMMA and no entanglement between them occurs. In contrast, in h-PS solution, due to the overlap and entanglement between the PS corona and h-PS matrix, the micelles exhibit diffusion with characteristic of Γ ∝ qα, where α = 2-2.6. For the same matrix polymer concentration, the micelles exhibit a faster diffusion in PMMA solution than that in h-PS solution, especially in semidilute solutions. The fact further indicates that the overlap and entanglement between the corona and h-PS matrix restrict the micelle motion.  相似文献   

18.
Fluorine-containing polyimide with crosslinkable vinyl group (FPI) was synthesized from 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl (PFMB), and 4-amino styrene (AS). The reinforced composite membranes based on semi-interpenetrating polymer networks (semi-IPN) were prepared via solution casting of FPI and Nafion®212, and crosslinking thereafter. The water uptake, swelling ratio, mechanical properties, thermal behavior, proton conductivity, and oxidative stability of the composite membranes were investigated. Compared with the recast Nafion® 212, the composite membrane shows better mechanical properties and improved dimensional stability. The tensile strength of the composite membranes ranges from 39.0 MPa to 80.0 MPa, which is higher than that of the recast Nafion® 212 membrane (26.6 MPa). The dimensional stability of the composite membranes increases with increasing FPI content in the membranes, whereas the proton conductivity decreases. The composite membranes show considerable proton conductivity from 2.0 × 10−2 S cm−1 to 8.9 × 10−2 S cm−1 at a temperature from 30 °C to 100 °C, depending on the FPI contents. The composite membranes with semi-IPN from FPI and Nafion®212 have considerable high proton conductivity, excellent mechanical properties, thermal and dimensional stabilities.  相似文献   

19.
A series of reinforced composite membranes were prepared from Nafion®212 and crosslinkable fluorine-containing polyimide (FPI) with various crosslinkers. The crosslinkable FPI reacts with the crosslinkers and forms semi-interpenetrating polymer networks (semi-IPN) structure with Nafion®212. The water uptake, swelling ratio, mechanical properties, thermal behavior, proton conductivity, and chemical oxidation stability of the composite membranes are studied. The degree of crosslinking is characterized by gel fraction of the composite membranes. Compared to pure Nafion®212, the composite membranes exhibit excellent thermal stability, improved mechanical properties and dimensional stability. The tensile strength of the composite membranes is in the range of 37.3-51.2 MPa. All the composite membranes exhibit high proton conductivity which ranges from 1.9 × 10−2 to 9.9 × 10−2 S cm−1. The proton conductivity of the composite membrane with 2-propene-1-sulfonic acid sodium salt (SAS) as the crosslinker is 9.9 × 10−2 S cm−1 at 100 °C which is similar to that of Nafion®212 under the same condition.  相似文献   

20.
Crosslinking reactions of Dextran (Dx) (Mn of 2.0×106 g mol−1) with some selective Cl-, P- and N-containing functional monomers such as epichlorohydrin (ECH), phosphorus oxychloride (POC13) and N,N′-methylenebisacrylamide (MBAM) were carried out in the basic aqueous solutions (2.8 N NaOH) at 25-50 °C. The optimum conditions of the effective swelling and crosslinking for the each system studied were found in copper (CuCl2·2H2O) solution. The percent swelling, equilibrium swelling, initial rate of swelling, swelling rate of constant, equilibrium water content, and diffusion type and constant values were evaluated for Dx/crosslinker (CL) systems at 1 mg/100 ml copper (CuCl2·2H2O) solution. A substantial difference of these parameters observed for the various Dx/CL systems was explained by the effect of nature of crosslinking agents on the mechanism of crosslinking and swelling processes. It was shown that Seq and Mc values increase depending on the nature of CLs in the following order: ECH>MBAM>POCl3. General scheme and proposed mechanism of crosslinking reactions in the Dx/CL systems were also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号