首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limei Xu  Hui Yang  Chunsheng Li 《Polymer》2010,51(16):3808-4000
A novel route for a preparation of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) block copolymer vesicles induced by supercritical carbon dioxide (scCO2) is demonstrated. When PS-b-PEO block copolymer solutions in tetrahydrofuran (THF) are treated with scCO2 at 70 °C for different times, PS-b-PEO copolymers first assemble into aggregated spheres; then aggregated spheres change into large compound micelles and finally evolve into vesicles. The possible formation mechanism of the vesicles is discussed.  相似文献   

2.
The mixed monolayer behavior of poly(methyl methacrylate) (PMMA) with different molecular weights and polystyrene-block-polyethylene oxide (PS-b-PEO) was investigated from the measurements of surface pressure–area per molecule (π-A) isotherms at three different temperatures (10°C, 25°C, and 40°C). The miscibility and nonideality of the mixed monolayers were examined by calculating the excess surface area as a function of composition. The molecular weight of PMMA was demonstrated to have a major effect on its miscibility with PS-b-PEO. Negative or close to zero deviations from ideality of surface areas were observed for PMMA with the lowest molecular weight (12,000 g/mole). Mostly positive deviations were detected in mixed PMMA/PS-b-PEO monolayers with higher molecular weights of PMMA. Because of probable mushroom-to-brush transition effect, the miscibility between PMMA and PS-b-PEO was found to be the best at 25°C among the experimental temperatures. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Low dielectric constant nanoporous poly(methyl silsesquioxane) (PMSSQ) was prepared through the templating of an amphiphilic block copolymer, poly(styrene-b-2-vinylpyridine) (PS-b-P2VP). The experimental and theoretical studies suggest that the intermolecular hydrogen bonding interaction is existed between the PMSSQ precursor and PS-b-P2VP. The result of modulated differential scanning calorimeter (MDSC) indicates the miscible hybrid of the PMSSQ precursor/PS-b-P2VP. The miscible hybrid and the narrow thermal decomposition of the PS-b-P2VP lead to nanopores in the prepared films from the results of transmission electronic microscopy (TEM), atomic force microscopy (AFM), and small angle X-ray scattering (SAXS). The effects of the loading ratio and the PS block volume ratio (fPS: 0.74, 0.46 and 0.35) on the morphology and properties of the prepared nanoporous PMSSQ films were investigated. The AFM and TEM studies suggest that the uniform pore morphology should be prepared from a modest porogen loading level for the optimum intermolecular hydrogen bonding. The PS-b-P2VP with a smaller fPS requires a higher loading level to obtain the uniform pores. The refractive index and dielectric constant of the prepared nanoporous films could be tuned by the loading ratio in the range of 1.361-1.139 and 2.359-1.509, respectively. However, both properties are independent of the fPS. The prepared study demonstrates the control of the morphology and properties of the nanoporous films through the polymer structure.  相似文献   

4.
Helene C. Maire 《Polymer》2009,50(10):2273-10190
This paper describes the orientation of cylindrical domains in thin films of a polystyrene-poly(methylmethacrylate) diblock copolymer (PS-b-PMMA; 0.3 as the PMMA volume fraction) on gold and oxide-coated Si substrates having different surface roughness. Atomic force microscopy images of PS-b-PMMA films having thickness similar to the domain periodicity permitted us to study the effects of substrate roughness and block affinity on domain orientation. PS-b-PMMA films on gold substrates showed metastable vertical domain orientation that was attained more slowly on rougher substrates. In contrast, the domains were horizontally oriented on oxide-coated Si regardless of surface roughness and the annealing conditions examined. In addition, cyclic voltammetry data for PS-b-PMMA films on gold substrates whose PMMA domains were etched suggested that the metastable vertically oriented domains reached the underlying substrates. These results indicate that PS-b-PMMA films containing vertically oriented cylindrical domains can be obtained by using rough gold substrates upon annealing under controlled conditions.  相似文献   

5.
It is found that the complexes of PS-b-P2VP and HAuCl4 in THF can form a compound vesicle when the THF solution is treated at 40 °C. The compound vesicle is composed of an insoluble wall formed by P2VP/HAuCl4 complexes and a soluble PS shell. The vesicular character of the aggregates was investigated by dynamic light scattering (DLS) and transmission electron microscope (TEM). The decrease of the solubility of P2VP blocks in THF drives the PS-b-P2VP/HAuCl4 complexes to aggregate into vesicles, which are stable upon dilution or crosslinking. Based on this study, the vesicles decorated with gold nanoparticles can be produced, which hold potential for the facile organization of the vesicle-supported precious metal catalysts.  相似文献   

6.
The dispersion of magnetic nanoparticles (NPs) in homopolymer poly(methyl methacrylate) (PMMA) and block copolymer poly(styrene-b-methyl methacrylate) (PS-b-PMMA) films is investigated by TEM and AFM. The magnetite (Fe3O4) NPs are grafted with PMMA brushes with molecular weights from M = 2.7 to 35.7 kg/mol. Whereas a uniform dispersion of NPs with the longest brush is obtained in a PMMA matrix (P = 37 and 77 kg/mol), NPs with shorter brushes are found to aggregate. This behavior is attributed to wet and dry brush theory, respectively. Upon mixing NPs with the shortest brush in PS-b-PMMA, as-cast and annealed films show a uniform dispersion at 1 wt%. However, at 10 wt%, PS-b-PMMA remains disordered upon annealing and the NPs aggregate into 22 nm domains, which is greater than the domain size of the PMMA lamellae, 18 nm. For the longest brush length, the NPs aggregate into domains that are much larger than the lamellae and are encapsulated by PS-b-PMMA which form an onion-ring morphology. Using a multi-component Flory-Huggins theory, the concentrations at which the NPs are expected to phase separate in solution are calculated and found to be in good agreement with experimental observations of aggregation.  相似文献   

7.
The time development of the surface morphology of asymmetric polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) thin films ‘annealing’ in methanol vapor, a selective solvent for minority P4VP block, was investigated by atomic force microscopy(AFM). For PS-b-P4VP with cylindrical structure in bulk, as annealing time progressed, the surface morphology underwent structural transitions from featureless topography to hybrid morphology of cylindrical and spherical pits, to cylinders, to nanoscale depressions, back to cylinders again. The different film thickness made the number of the transitions observed, at any given annealing time, different. The thicker the film is the more transitions at a given annealing time can be observed. If the film was not thick enough, depressions appeared. For PS-b-P4VP with spherical structure in bulk, it displayed nanoscale depressions with the annealing time increasing. A possible mechanism of the transition of morphologies during solvent annealing was proposed.  相似文献   

8.
We demonstrate a new and simple route to fabricate highly dense arrays of hexagonally close packed inorganic nanodots using functional diblock copolymer (PS-b-P4VP) thin films. The deposition of pre-synthesized inorganic nanoparticles selectively into the P4VP domains of PS-b-P4VP thin films, followed by removal of the polymer, led to highly ordered metallic patterns identical to the order of the starting thin film. Examples of Au, Pt and Pd nanodot arrays are presented. The affinity of the different metal nanoparticles towards P4VP chains is also understood by extending this approach to PS-b-P4VP micellar thin films. The procedure used here is simple, eco-friendly, and compatible with the existing silicon-based technology. Also the method could be applied to various other block copolymer morphologies for generating 1-dimensional (1D) and 2-dimensional (2D) structures.  相似文献   

9.
Polystyrene/polystyrene-block-poly(methyl methacrylate)/poly(methyl methacrylate) (PS/PS-b-PMMA/PMMA) composite particles were prepared by releasing toluene from PS/PS-b-PMMA/PMMA/toluene droplets dispersed in a sodium dodecyl sulfate aqueous solution. The morphology of the composite particles was affected by release rate of toluene, the molecular weight of PS-b-PMMA, droplet size, and polymer composition. ‘Onion-like’ multilayered composite particles were prepared from toluene droplets of PS-b-PMMA and of PS/PS-b-PMMA/PMMA, in which the weights of PS and PMMA were the same. The layer thicknesses of the latter multilayered composite particles increased with an increase in the amount of the homopolymers. PS-b-PMMA/PS composite particles had a sea-islands structure, in which PMMA domains were dispersed in a PS matrix. On the other hand, PS-b-PMMA/PMMA composite particles had a cylinder-like structure consisting of a PMMA matrix and PS domains.  相似文献   

10.
We present experiments on the melt and crystal morphology of a asymmetric semi-crystalline poly(ethylene/butylene-b-ethyleneoxide) diblock copolymer (PBh-b-PEO) in bulk as well as in thin films. Simultaneous small- and wide-angle X-ray scattering combined with AFM and TEM images reveal in the melt a bulk morphology of hexagonally packed cylinders of PEO in a PBh matrix, that transforms into a hexagonal perforated lamellar phase upon crystallization. X-ray reflectivity of thin films of PBh-b-PEO in the melt indicates wetting layers at the top and bottom interfaces, which force the cylinders in the interior to orient parallel to the substrate. Crystallization of the PEO block leads to roughening of the air/film interface and causes lateral structuring coexisting with planar lamellar layers in thinner films.  相似文献   

11.
Yongchun Chen  Guangxin Gu 《Polymer》2006,47(5):1640-1648
Polyester polyol/titania hybrid resins and their corresponding polyurethane/titania hybrid films were prepared by in situ method via sol-gel process of titanium n-butoxide under acidic condition. The effects of the contents and types of titania sol on the microstructure and some mechanical and optical properties of the hybrids were investigated. It was found that introducing titania into the resin could increase some physical properties such as the viscosity of the resin, modulus, Tg, mechanical strength, abrasion resistance, hardness and UV absorbance, but different titania sols obtained from various molar ratios of water to titanium n-butoxide had an obvious influence on the microstructure and properties of the hybrid films.  相似文献   

12.
Two 4,4′‐oxydiphthalic anhydride (ODPA)‐based polyimide (PI)/titania hybrid films with different morphologies were prepared through an in situ sol‐gel process. The precursor, poly(amic acid) (PAA), was synthesized using ODPA, diamine of 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP) or 4,4′‐diaminodiphenyl ether (ODA) and a suitable amount of dimethylformamide solvent. A mixture of tetraethylorthotitanate (Ti(OEt)4) and acetylacetone with molar ratio of 1:4 was then added to the PAA solution and mixed thoroughly. Following curing, PI/titania hybrid membranes with different crosslinkages and Ti(OEt)4 contents were prepared. PI hybrids with the longer BAPP diamine present different morphologies and property changes related to the Ti(OEt)4 content from those of hybrids with the shorter ODA diamine. The morphologies of the two ODPA‐based PI/titania hybrids were studied with reference to the disruption of imide ring formation. Different crosslinked structures produced were identified using Fourier transform infrared analysis from the frequency shift of the C?O band and relative absorbance intensities of bands of C?O group and imide ring (? N?). Thermal properties, O2/N2 gas separation performance, contact angle, storage modulus, glass transition temperature and decomposition temperature of the PI hybrids were all found to be functions of the Ti(OEt)4 content, crosslinked structure and PI type. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
In this study, a series of PI/TiO2 nanohybrid materials were prepared from polyamic acid of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride/3,3′-diaminodiphenyl sulfone, and titania precursor by the sol-gel method. The titania content in the hybrid system was varied from 0 to 5 wt %. The physical and mechanical properties of the hybrids such as refractive index, optical transmission, and tensile strength were investigated. It was determined that incorporation of titania precursor into the PI matrix improved the refractive indices and tensile modulus of the hybrid films. It was observed that the optical transmittance and tensile strength of the nanohybrids were slightly decreased with the increasing titania content. It was determined that the hybrid films might have enhanced the UV shielding properties compare to the PI films. Furhermore, the hybrid materials showed better thermal stability than the PI. SEM studies demonstrated that titania particles (1 and 3 wt %) were distributed homogeneously through the PI matrix. The effect of the titania content in the PI on DC conductivity and dielectric constant were also analyzed. For the PI film containing 5 wt % titania, activation energy value increased to 1.0 eV from the value of 0.65 eV. DC conductivity value of the films depending on titania content varied between 3.0 × 10−11 and 1.4 × 10−10 S/cm at room temperature. Relative dielectric constants of the films were calculated from capacitance measurements depending on frequency (40–100 kHz) at different temperatures (303–360 K). The values increased with the increasing titania content. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Polyimide/titania (PI/TiO2) nanocomposite films have been successfully fabricated through the in situ formation of TiO2 within a PI matrix via sol–gel method. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized by mixing pyromellitic dianhydride (PMDA), with equimolar amount of a diamine monomer having a pendent benzoxazole unit and two flexible ether linkages in N,N-dimethylformamide (DMF) solvent. Tetraethyl orthotitanate [Ti(OEt)4] and acetylacetone were then added to the resulted PAA. After imidization at high temperature, PI/TiO2 hybrid films were formed. The structure and morphology of the hybrid nanocomposites with different titania contents (0 wt%, 5 wt%, 10 wt%, and 15 wt%) were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy. The results indicate that the TiO2 nanoparticles were homogeneously dispersed in the hybrid films. The thermogravimetric analysis of nanocomposites confirms the improvement in the thermal stability with the increase in the percentage of titania nanoparticle. Transmission electron microscopy showed that the nanoparticles with an average diameter of 25–40 nm were dispersed in the polymer matrix.  相似文献   

15.
B.H. Sohn  S.H. Yun 《Polymer》2002,43(8):2507-2512
We obtained perpendicular lamellar orientations in thin films of symmetric polystyrene-block-poly(methyl methacrylate), PS-b-PMMA, on self-assembled monolayers (SAMs) of 3-(p-methoxyphenyl)propyltrichlorosilane (MPTS) prepared on silicon wafers. In contrast to completely parallel lamellae on silicon wafers having a native oxide layer, perpendicular lamellae at the MPTS interface with parallel lamellae at the air interface were directly observed by transmission electron microscopy (TEM) in cross-sectional view. The perpendicular lamellae at the MPTS interface were attributed to the non-preferential (neutral) MPTS-covered substrate to both PS and PMMA blocks. The neutrality of the SAMs of MPTS was confirmed by the similar interfacial tension values of the SAMs of MPTS with PS and PMMA, estimated by contact angle measurements.  相似文献   

16.
A poly(l-lactic acid)-block-polystyrene-block-poly(methyl methacrylate) (PLLA-b-PS-b-PMMA) triblock copolymer was synthesized with a crystalline PLLA end block. Single crystals of this triblock copolymer grown in dilute solution could generate uniformly tethered diblock copolymer brushes, PS-b-PMMA, on the PLLA single crystal substrate. The diblock copolymer brushes exhibited responsive, characteristic surface structures after solvent treatment depending upon the quality of the solvent in relation to each block. The chemical compositions of these surface structures were detected via the surface enhanced Raman scattering technique. Using atomic force microscopy, the physical morphologies of these surface structures were identified as micelles in cyclohexane and “onion”-like morphologies in 2-methoxyethanol, especially when the PS-b-PMMA tethered chains were at low tethering density.  相似文献   

17.
Ying Zhao  Chia-Chung Sun 《Polymer》2009,50(22):5333-1543
Dissipative particle dynamics (DPD) method is applied to model the self-assembly of diblock copolymer poly(ethyl ethylene)-block-poly(ethylene oxide) (PEE-b-PEO) and homopolymer poly(propylene oxide) (PPO) in aqueous solution. In this study, several segments are coarse-grained into a single simulation bead based on the experimental density. For the self-assembly of pure diblock copolymer PEE-b-PEO in dilute solution, the DPD simulation results are in good agreement with experimental data of micelle morphologies and sizes. The chain lengths of the block copolymers and the volume ratios between PPO and PEE-b-PEO are varied to find the conditions of forming multicompartment micelles. The micelles with core-shell-corona structure and the micelles with two compartments are both formed from the mixture of PEE-b-PEO and PPO in aqueous solution.  相似文献   

18.
An effective method for fabrication of long range ordered micro- and nanostructures on surfaces is to control the interactive crystallisation of block copolymers. In this study, the influence of different initial mesophases of a double crystalline polyethylene-block-poly (ethylene oxide) (PE-b-PEO) diblock co-oligomer on the interactive crystallisation process was studied using synchrotron radiation X-ray diffraction (SAXS/WAXD), in situ optical microscopy and differential scanning calorimetric analysis (DSC). According to the applied annealing procedure, different PE-b-PEO initial mesophases, i.e., disordered, cylindrical and spherical, have been induced. In all cases, the subsequent PEO crystallisation disrupted these initial microdomains and transformed them into crystalline lamellar morphologies with the same long periods. However, the different initial mesophases significantly affected the PEO crystallisation kinetics due to different topological confinements. An initial disordered mesophase induced the highest PEO crystallisation rate because PEO nucleation and crystal growth were limited only by chain diffusion. For an initial spherical or cylindrical mesophase, decreased PEO crystallisation rates were observed. Here, the chain diffusion was decreased by the microdomain structure. For an initial cylindrical mesophase, the earlier formed PE crystals act as a template for the subsequent PEO crystallisation and, thus, increased the PEO crystallisation as compared to the spherical mesophase where the PE was amorphous. This study demonstrates that the topological confinement of the block copolymer's initial mesophase strongly influences the crystallisation kinetics and, thus, the structures formed at the surface of drop-casted films.  相似文献   

19.
20.
Ordered arrays of Au or Ag nanoparticles supported on two-dimensional graphitic carbon films were prepared by direct carbonization of stabilized asymmetric polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP) inverse micellar films loaded with metal precursors. Crosslinked PS-b-P4VP thin film templates with metal precursors selectively distributed in P4VP domains were converted to carbonaceous thin films having well-defined, highly dispersed metal nanoparticle (NP) arrays by ultraviolet (UV) irradiation under vacuum and subsequent carbonization. Mesoporous carbon films were also obtained after extracting the metal NPs by sonication in selected solvents. PS-b-P4VP was employed not only as carbon source, but also as template for introducing metal NPs in a nanopatterned configuration. The characteristic features and properties of thus generated hybrid carbon nanostructures were investigated by microscopy, UV–visible spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction measurement, and Raman spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号